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abstract: Previous results showing that lack of information on
local population density leads to higher emigration probabilities in
unpredictable environments but to lower emigration probabilities
in constant or highly predictable scenarios have recently been chal-
lenged by Poethke et al. By reimplementing both our model and that
of Poethke and colleagues, we demonstrate that our original results in-
deed hold to the presented critiques and do not contradict previ-
ous findings. The comment by Poethke and colleagues does, however,
present potentially intriguing results suggesting that negative density-
dependent dispersal evolves under white noise for some model formu-
lations. Here, through intermodel comparison, we seek to better un-
derstand the source of the differences in results obtained in our study
and theirs. We conclude that the apparent negative density depen-
dence reported by Poethke et al. is effectively density independence
and that the shape of the reaction norm they obtain is a model arte-
fact. Further, this response provides an opportunity to elaborate on
some important issues in evolutionary and ecological modeling re-
garding (i) the importance of carefully considering different models’
assumptions in comparisons among models, (ii) the need to consider
the role of stochasticity and uncertainty when presenting and inter-
preting results from stochastic individual-based models, (iii) the ade-
quate choice of the underlying ecological model that creates the selec-
tive pressures determining the evolution of behavioral reaction norms,
and (iv) the appropriate choice of mutation models.

Keywords: informed dispersal, reaction norm evolution, intermodel
comparison, mutation model.

Introduction

Poethke et al. (2016) recently commented on our article
(Bocedi et al. 2012) investigating the role of information
acquisition and information uncertainty in the evolution
of density-dependent emigration. In their comment, Po-
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ethke and colleagues argue that there is a risk that all our
results are obscured by important “deficits” in our choice
of methods, and, in particular, they challenge our finding
that, in some cases, lack of information leads to lower emi-
gration probabilities compared to when some information
about population density is available to individuals. The
authors present new results that they attest falsify those
we presented, showing that full knowledge on population
density leads to emigration probabilities that are compara-
ble to or lower than noninformed emigration probabilities.
They argue that these differences are due to “(i) a misleading
use of the term ‘population density,’ (ii) a misconception
concerning the true informative value of different decision
criteria used, and (iii) arbitrary constraints imposed on the
evolution of the dispersal function” (Poethke et al. 2016,
p. 136). These represent quite major challenges to both the
conceptual and the technical robustness of our work. We
welcome the opportunity to provide some clarity and hope
that our response will inform a debate on appropriate model
design and especially on best practice in comparisons among
models; this is a debate that has relevance for theory develop-
ment well beyond the topic of dispersal evolution.
First, we want to emphasize that we believe part of the

disagreement results from Poethke et al. (2016) misinter-
preting our results. From the abstract of our study (Bocedi
et al. 2012), we read, “Lack of information led to higher
emigration probabilities in more unpredictable environ-
ments but to lower emigration probabilities in constant
or highly predictable scenarios” (p. 606). Hence, as also
shown in that article’s figure 3, in more unpredictable en-
vironments or white noise (i.e., when fluctuations in hab-
itat quality are temporally uncorrelated), we found that
noninformed individuals have higher emigration probabil-
ities and not lower, as claimed by Poethke et al. (2016).
These results are in agreement with previous studies that
considered only white noise (Enfjäll and Leimar 2009;
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Poethke et al. 2011). In contrast, when fluctuations in the
environment are positively correlated (i.e., red noise) or
when the environment is stable, we found that nonin-
formed individuals evolve lower emigration probabilities
than informed ones, which is also in agreement with previ-
ous studies that considered these scenarios (Schjørring
2002; Armsworth 2009).

Second, we wish to defend the way in which we use the
term “population density.” We do not believe our usage
to be incorrect or misleading. Strictly speaking, population
density is defined as the number of individuals per unit
area. This is clearly different from population size, which
is simply the number of individuals N in a population, un-
less the area is held constant. However, the ecological sig-
nificance of area for a species might not coincide with the
simple spatial meaning. In fact, the number of individuals
that can stably coexist in a given area will depend on the
amount of resources present in that area. Space may some-
times be the single limiting resource, but there are typically
other factors, such as food or mates, for example. In our
study, we considered fluctuation in habitat quality (K );
it therefore makes ecological sense to consider individuals
responding to population density, where the “area” is not
just space but resources and, hence, is varying with hab-
itat quality. A small or large N will typically not mean much
to the individual if N is not in relation to how many indi-
viduals a given area can support (K ). Furthermore, we find
it rather confusing that Poethke et al. (2016) refer to N both
as population size and population density interchange-
ably. However, we do agree that under a white noise en-
vironment, as opposed to a more predictable environment
(red noise), current N=K holds very little information on
the fitness of individuals in the next generation, a point
we had already amply discussed in Bocedi et al. (2012). In
this case, N has somewhat more informative value because
even if K changes unpredictably, given the type of popula-
tion dynamics implemented, N will respond more gradu-
ally to these changes. However, as Poethke et al. showed and
we confirm below, under white noise, the correlation be-
tweenN and next-generation fitness is still rather low, mak-
ing informed dispersal decisions basically equivalent to non-
informed ones.

Third, we here demonstrate that our results hold and ar-
gue that there are no misconceptions in our original study.
Poethke et al. challenge our finding by “replicating” our
model. “Replicate” is an interesting choice of word given
that the authors changed almost every component and pa-
rameter of our original model (table A1, available online). It
is therefore not possible, from their model, to judge from
where the differences in results stem. To shed light on this
issue, we have replicated exactly the model by Poethke et al.
(2016), as far as it is possible from the presented descrip-
tion, and compared it with our original model (Bocedi
et al. 2012). We show that both models in fact confirm the
key qualitative results that we previously presented.
Beyond the specific results, this debate give us the op-

portunity to comment on some important issues in evolu-
tionary, as well as in ecological, modeling. These are (i) the
importance of carefully considering models’ assumptions
when evaluating their results and especially in compari-
sons among models, (ii) the need to consider the role of
stochasticity and uncertainty when presenting and inter-
preting results from stochastic individual-based models,
(iii) the adequate choice of the underlying ecological model
that creates the selective pressures determining the evolu-
tion of behavioral reaction norms, and (iv) the appropriate
choice of the mutation model.
Model Reimplementation or a New Different Model?

We reimplemented both models exactly as described in
Bocedi et al. (2012) and Poethke et al. (2016) and repeated
all the simulation scenarios performed by Poethke et al.
(2016). As in our model, there is no equivalent of Poethke
and colleagues’ Nran for the individual’s estimate of popu-
lation size; for our model, we substitute that scenario with
low information precision, where population density is es-
timated by sampling from a negative binomial distribution
with mean equal to the real population size and dispersion
factor lp 1. However, it should be noted that these two
estimates are not the same. While the latter contains some
information, the first (Nran) is equivalent to no information.
For both models, we used the same initialization distribu-
tions and the same distributions of mutational effects (but
not the same rates) used by Poethke et al. (table A1). We
ran both models on a grid of 20#20 cells. Otherwise, all
the model components and parameters are equivalent to
their respective original versions (table A1). Simulations
were replicated either 20 or 40 times.
The type of information had no significant effect on the

evolved mean emigration probability when modeled with ei-
ther our model or our reimplementation of Poethke et al.’s
model (fig. 1). This is in agreement with our previous find-
ing (cf. fig. 3D in Bocedi et al. 2012), and it is explained by
the fact that under white noise, estimates of current popula-
tion density or size have little value as they poorly correlate
with the next year’s population density or size. This result
was also previously corroborated by the finding that indi-
viduals invest much fewer resources in acquiring informa-
tion under white noise than stable or red noise environments
(fig. 4 in Bocedi et al. 2012). In our model, individuals
evolved much lower emigration probabilities compared to
those evolved in our reimplementation of Poethke et al.’s
model. This is likely due to the difference in environmental
stochasticity and population dynamics between the two
models (table A1). Poethke et al. (2016) modeled a much
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more variable environment than ours, with higher variance
in K (fig. 2A); hence, it is to be expected that higher emi-
gration probabilities evolve (Travis 2001; Poethke and Ho-
vestadt 2002; Kun and Scheuring 2006; Bach et al. 2007).
Notably, the combination of different models for environ-
mental stochasticity and population dynamics led our model
to have both higher mean and higher variance in popula-
tion size (fig. 2B) compared to the distribution of N ob-
tained from Poethke et al.’s model. As we will show below,
this is very important for the evolution of emigration proba-
bilities and especially reaction norms to density, as it changes
the range of densities in which the trait (emigration probabil-
ity) is under stronger selection (figs. 3, 4).

The mean emigration probabilities obtained with our
reimplementation of Poethke et al.’s model (fig. 1) are higher
than those reported by the authors (fig. 1), andwedid not find
the same differences among different types of information.
We do not have an explanation for this discrepancy. How-
ever, the emigration probabilities given by the reaction norms
reported in Poethke et al. (2016; fig. 2) at realized population
densities are much higher than those reported by the authors
(fig. 1) and are closer to our results.

Poethke et al. showed that negative density-dependent
emigration probability evolves when individuals base their
decision on Nran=K or on N=K (fig. 2A in Poethke et al.
2016). We argue that what they show is not the evolution
of negative density dependence but rather the evolution of
density-independent emigration. By replicating their model,
what apparently evolves is a range of reaction norms from
positive to negative density dependence (fig. 3A, 3B). In fact,
due to the distribution of population density values (fig. 3A,
3B, histograms), the range of densities experienced by indi-
viduals is very limited; hence, selection effectively acts over
this very narrow range of densities. This causes all the curves
to converge around the median population density and
evolve the same value as density-independent emigration.
The shape the curve assumed over the rest of the density
space is then largely irrelevant, as selection is weak or absent
and, thus, the overall shape of the curve is highly variable.
In contrast, in our model, individuals experience a much

broader range of population densities, extending the region
in which emigration probability is effectively under selec-
tion (fig. 4A, 4B). In this situation, a reaction norm evolves
that is clearly positively density dependent. Note, however,
that because of the low value of information in the white
noise environment, the realized average emigration proba-
bility evolves to be the same as for the density-independent
emigration probability (cf. fig. 1). The same pattern results
when individuals base their dispersal decision on popula-
tion size instead of density (figs. 3C, 3D, 4C, 4D). From both
models, what evolves in this case is a density-independent
emigration probability.
Poethke et al. argue that a negative density-dependent

emigration probability should, in fact, be expected to
evolve. The verbal argument they make is that, on average,
under white noise, present competition (Nt=Kt) should be
expected to be negatively correlated with the competition
experienced by the next generation. We tested for this in
both models, finding no evidence for a negative correlation
between Nt=Kt and Nt11=Kt11. Rather, the correlation was
A B

Figure 2: Distribution of carrying capacities (A) and population
sizes (B) emerging from the two models, Bocedi et al. (2012) and
Poethke et al. (2016). Data are plotted as medians (solid bands), first
and third quartiles (box limits), approximately twice the standard
deviation (whiskers), outliers (dots), and means (diamonds) over
the last 100 generations over 20 replicate simulations.
ee

Figure 1: Effect of the type of information used on the evolution of
emigration probabilities: comparison between results obtained by
reimplementing exactly Poethke et al.’s (2016) and Bocedi et al.’s
(2012) models (white and gray boxes, respectively). The value Ne cor-
responds to Nran in the case of Poethke et al.’s (2016) model and to a
value sampled from a negative binomial distribution with mean equal
to N and lp 1 in the case of Bocedi et al.’s (2012) model. Mean indi-
vidual emigration probabilities (d ) at generation 7,000 are presented as
medians (solid bands), first and third quartiles (box limits), and ap-
proximately twice the standard deviation (whiskers) over 20 replicate
simulations.
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consistently not significantly different from zero (correlation
averaged across patches and replicates 20.0035 0.018 SD
with Poethke et al.’s model and 0.0135 0.099 SD with
our model; both mean correlations have been calculated
for the scenario with constant noninformed dispersal).

Poethke et al.’s (2016) main critique of our method and,
thus, our results was that we restricted the parameters’ evo-
lution in a way that allows only positive density-dependence
emigration to evolve and that our mutation rule biases pa-
rameter values toward the center of the predefined range.
Indeed, this is a fair critique, and we realize that the distri-
bution ofmutational effects we chose was not ideal as it con-
strained the range of values parameters could assume. De-
spite this restrictive assumption, the reimplementation of
our model with Poethke and colleagues’ mutational effects
(fig. 4) shows that our previous results are robust and that
what evolves is still a positive density dependence. Note that
the differences in emigration probabilities that we originally
found between the noninformed strategy and strategy based
on low-precision information are smaller when we remove
previous evolutionary constraints (cf. fig. 3D in Bocedi et al.
2012 and this reply’s fig. 1, gray boxes), confirming that, un-
der white noise, what evolves is essentially a noninformed
strategy. Poethke et al. further argue that our relatively high
mutation rate (0.001), together with relatively low selection
pressure on each of the parameters, explains the evolution
of a positive density-dependent emigration probability in-
stead of the expected negative density dependence. We show
that our results are robust to these assumptions (fig. A1, avail-
able online) and that what evolves is consistently a positive
density-dependent emigration probability.
Finally, we try to better understand from where the dif-

ferences in results between the two models stem. We pro-
gressively change our model by changing different compo-
nents into ones implemented by Poethke et al. Hence, we
try to break our model (Thiele and Grimm 2015) to the
point that it matches Poethke and colleagues’ results. On
top of having already implemented the authors’ initializa-
tion rules and distribution of mutational effects, we imple-
ment our model with Poethke et al.’s submodels for (a)
environmental stochasticity (fig. 5A); (b) population dy-
namics (fig. 5B; although it should be noted that with
the current parameterization, the two population dynam-
ics differ only in the value of growth rate); (c) both envi-
ronmental stochasticity and population dynamics (fig. 5C);
and (d) environmental stochasticity, population dynamics,
and mutation rate (fig. 5D). We restrict the comparison to
the case where individuals have full knowledge of the pop-
ulation density, as our N e=K and Poethke and colleagues’
Nran=K are not directly comparable.
A B

C D
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N

Figure 3: Effect of the type of information used on the evolution of the emigration reaction norm to population density (or size) modeled
with the reimplemented Poethke et al. (2016) model. A, Individuals randomly guess the population size (Nran) and base their dispersal de-
cision on estimated population density (Nran=K ). B, Individuals have full knowledge of the population density (N/K ). C, Individuals base their
dispersal decision on a random guess of population size (Nran). D, Individuals base their dispersal decision on the true population size (N ). Each
solid line represents the mean reaction norm evolved in a single replicate (out of 20) at generation 7,000. The black dashed line indicates the
evolved mean density-independent emigration probability. Histograms show the distribution of population densities (A, B) or sizes (C, D) over
the last 100 generations over the 20 replicate simulations, while the gray dashed lines indicate the medians of those distributions.
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Implementing the different environmental stochasticity
submodel in our model led to only 2 out of 40 replicates
resulting in negative density-dependent reaction norms
(fig. 5A), while a consistent positive density dependence
was found when changing only the population dynamics
submodel (fig. 5B). By changing both the environmental
stochasticity and the population dynamics submodels at
the same time (fig. 5C), we obtained a mix of replicates
evolving either a negative or positive density-dependent re-
action norm. A similar mix of negative and positive density-
dependent reaction norms was obtained when we addition-
ally introduced Poethke et al.’s submodel for the mutation
rate (fig. 5D).We reiterate, however, that calling what evolves
here a reaction norm ismisleading, as in the range of densities
experienced by individuals, emigration is effectively density
independent.
Discussion

We have shown that the results presented in Bocedi et al.
(2012) withstand the critique recently presented by Poethke
et al. (2016), and therefore, there are no reasons to doubt
the validity of that study based on these arguments. What
was described as a “misleading use” of the term population
density, misconceptions concerning the “true informative
value of different decision criteria,” and “arbitrary con-
straints” imposed on the evolution of dispersal function
do not affect our original results. Under temporally uncor-
related environmental fluctuation (white noise), informa-
tion about either population density or size has low value
as the environment is completely unpredictable. Therefore,
noninformed and informed individuals evolve to have the
same emigration probability at the more frequently realized
population densities (or sizes). Furthermore, when emi-
gration probability is allowed to evolve as a response to
population density (or size), individuals evolve a positive
density-dependent response.
We agree with Poethke et al. on the point that the evo-

lution of an emigration reaction norm depends on the spe-
cific type of information individuals may use. A very inter-
esting question is, on what type(s) of information should
individuals base their dispersal decisions, for example,
A B

C D

e

e

Figure 4: Effect of the type of information used on the evolution of the emigration reaction norm to population density (or size) modeled with
the reimplemented Bocedi et al. (2012) model (which uses the same distribution of mutational effects as Poethke et al. 2016). A, Individuals
estimate the population size (Ne) by sampling from a negative binomial distribution with mean N and lp 1, and base their dispersal decision
on estimated population density (Ne=K). B, Individuals have full knowledge of the population density (N=K). C, Individuals base their dispersal
decision on the estimateNe of population size.D, Individuals base their dispersal decision on the true population size (N ). As in figure 3, each solid
line represents the mean reaction norm evolved in a single replicate (out of 20) at generation 7,000. The black dashed line indicates the evolved
mean density-independent emigration probability. Histograms show the distribution of population densities (A, B) or sizes (C, D) over the last
100 generations over the 20 replicate simulations, while the gray dashed lines indicate the medians of those distributions.
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population size, density, habitat quality, internal status, or
sex ratio? Dispersal decisions are likely to be influenced by
a suite of interacting internal and external, abiotic and bi-
otic factors and sources of information, and we are still far
from understanding this complexity (Clobert et al. 2009).
However, despite the interest and breadth of this question,
this was not the objective of our original study, which was,
rather, investigating, given one source of information
(N=K), the role of information precision and environmen-
tal stochasticity on the evolution of emigration probability
depending on that particular information. Here, we further
demonstrated that not only do our results under white
noise hold when using N=K but also when using N as a
source of information.
Important Messages for Evolutionary
and Ecological Modeling

This debate gives us the opportunity to illustrate and com-
ment on some general issues in evolutionary and ecological
modeling. First, it is important to bear in mind that a model
is its assumptions, and changing these assumptions means
building a new model that may or may not give the same
results as the original one. To replicate a model means to
reimplement, independently, exactly the samemodel (Thiele
and Grimm 2015). Changing several assumptions at the
same time makes it very difficult to nail down what causes
eventual differences in results and can lead to misinter-
pretation, as we show in this case. While the differences be-
tween the two models may not seem to be major ones, they
create important differences in the selective environment,
which lead to the major differences in model outcomes.
Replicating and breaking models is indeed a healthy and
yet underused practice in ecological and evolutionary mod-
eling (Thiele and Grimm 2015). However, the breaking of
a model has to be done systematically to avoid spurious
results.
Evolution of dispersal, in common with many other evo-

lutionary questions, has traditionally been investigated with
analytical models. It is only recently that evolutionary mod-
eling has started to use a stochastic individual-based ap-
proach, and indeed, Poethke and his collaborators have been
some of the first to apply this promising approach to the
evolution of dispersal (e.g., Poethke and Hovestadt 2002;
Poethke et al. 2003, 2007, 2010). In this transition, it is cru-
cial to consider a fundamental difference: individual-based
models have often multiple sources of stochasticity, and
the results will rarely be deterministic. Thus, to be meaning-
ful, results from an individual-based model must be accom-
panied by a representation or estimate of the uncertainty
around them (Grimm and Railsback 2005). The number
of replicates run by Poethke et al. (2016) was not reported;
A B

C D

Figure 5: Breaking Bocedi et al.’s (2012) model by implementation of Poethke et al.’s (2016) model features. A–D, Mean emigration prob-
ability evolved when individuals had full knowledge of the population density (N=K). A, Bocedi et al.’s (2012) model with changed submodel
for environmental stochasticity. B, Bocedi et al.’s (2012) model with changed submodel for population dynamics. C, Bocedi et al.’s (2012) model
with changed submodels for environmental stochasticity and population dynamics. D, As C, with the further change of the mutation rate
submodel. For all submodel specifications, see table A1. Each solid line represents the mean reaction norm evolved in a single replicate (out
of 40) at generation 7,000. For lines and color legend, see figures 3, 4.
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hence, we could not evaluate the robustness of their results
directly from their comment. However, from our reimple-
mentation, we were able to obtain their result of an apparent
negative density-dependent emigration probability only in
some of the replicates. Furthermore, to obtain those same
results with our model, we had to change the submodels for
both environmental stochasticity and population dynamics.
This example brings us to two more observations.

When modeling the evolution of a trait, and in particular
the evolution of a behavioral reaction norm, we need to pay
attention to the conditions under which selection is acting
on the trait. In the case of Poethke et al.’s (2016) model, be-
cause of the particular ecological model implemented, selec-
tion on dispersal is acting in a very restricted region of pop-
ulation densities. Hence, the implemented dispersal function
will be under strong selection for the values it assumes in
that specific region; beyond that, region selection is very
weak because individuals very rarely or never experience
those densities, making the particular shape of the function
irrelevant. In contrast, in our model, which implemented a
different ecological submodel, the range of population den-
sities individuals experience is much broader, resulting in a
broader portion of the dispersal function being under selec-
tion. In this case, evolving the right shape reaction norm is
more important for individuals as they are likely to experi-
ence a range of conditions, and as we show, what evolves is
always positive density dependence. Nevertheless, because
of the already mentioned low value of information under
white noise, on average, informed individuals emigrate with
the same probability as noninformed individuals. A more
general question is, therefore, what the appropriate under-
lying ecological model should be when the objective is in-
vestigating the evolution of specific behavioral reaction
norms. As reaction norms describe phenotypic responses
across a range of environments, in this case, across a range
of population densities or sizes, an appropriate underlying
ecological model should allow individuals to experience a
range of values of the independent variable (i.e., selection
should be created across the range of interest) to allow
the evolution of a response function rather than a point re-
sponse. Of course, both methods tell us something, but we
should be careful not to extrapolate the results outside the
range in which selection operates.

A further observation is about the choice of model for
the mutation rate. Poethke et al. use a mutation probability
that decays exponentially through time (see also Poethke
and Hovestadt 2002; Poethke et al. 2003, 2007, 2010). Par-
ticularly, in Poethke et al. (2016), mutation probability
decreases from 0.01, in the first generation, to 4.5#1027 at
generation 5,000. The rationale behind this approach is “to
allow for broad initial genetic variation but selective fine-
tuning of decision rules later in the simulations” (Poethke
et al. 2016, p. 138). This method is directly derived from
the method of optimization by simulated annealing, an ap-
proach developed for optimization problems derived from
techniques of statistical mechanics (Kirkpatrick et al. 1983).
This raises the question of whether evolutionary models are
optimization problems and, hence, whether this technique
can or should be applied. Looking at the problem from a bi-
ological point of view, it seems hard to justify a decaying mu-
tation rate. We are not aware of any examples beyond the
above-cited articles of any other evolutionary model that
has applied this method (for examples of other evolutionary
models that apply a constant mutation rate, cf. Reeve 2000;
Jones et al. 2003; Guillaume and Whitlock 2007; Guillaume
and Perrin 2009; Hovestadt et al. 2010; Kubisch et al. 2010,
2013; Roff 2010), nor are we aware of any evidence for the ex-
istence of a decaying mutation rate in nature. We realize that
Poethke et al.’s mutation model is not meant to be genetically
realistic and that it is simply a way to get the system to equi-
librium. However, we can see a potential problem with it: if
the system has not reached equilibrium by the time the mu-
tation rate has decreased to very low values, it can become
stuck in a state that is not equilibrium as a consequence of sto-
chastic events that happened in the first part of the simula-
tion. While in this particular case, the choice of mutation
model does not result in major differences (cf. figs. 5C and
5D), wewould urge caution in using optimization approaches
such as simulated annealing, especially now that computa-
tional time is rarely a major limiting factor.
Another question is, what is an appropriate mutation

rate? The rate 1023 has been largely used in evolutionary
modeling because it is close to what has been empirically es-
timated for mutational variance (Lynch 1988; Houle et al.
1996; Reeve 2000). Of course, this does not mean that it is
the right one to use, and the choice will depend on what
we are actually modeling. In this case, we are not modeling
explicit alleles but the phenotypic effect of probably many
loci, adopting what can be considered a continuum-of-
allele model (Kimura 1965; Lande 1976). Hence, a mutation
probability of 1023 does not seem particularly high. Gener-
ally, mutation rates are applied somewhat arbitrarily in a
lot of evolutionary models, partly because information from
empirical systems remains very scarce (although see recent
progress in Lang and Murray 2008; Zhu et al. 2014; Levy
et al. 2015). This calls for a more careful choice of mutation
rate and for the need to test the sensitivity of any specific
model to it.
In summary, this debate has given us the opportunity to

confirm previous results that under temporally uncorre-
lated environmental variations, information on local den-
sity has low value for individual dispersal decisions, and
on average, the emigration probabilities that evolve in the
presence or absence of information are the same.What type
of information individuals are expected to base their dis-
persal decision on and how different sources of information
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are integrated remain open questions. Importantly, we have
highlighted several issues that require careful consideration
when modeling the evolution of reaction norms. Not con-
sidering the properties of the underlying ecological model
that creates the selective pressure on the evolving trait(s)
and the stochasticity inherent to stochastic individual-
based models, or comparing models without considering
how they differ in their assumptions, can be misleading
when interpreting models’ results.
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