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Ecography Models are useful tools for understanding and predicting ecological patterns and pro-
2022: 05787 cesses. Under ongoing climate and biodiversity change, they can greatly facilitate deci-
doi: 10.1111/ecog.05787 sion-making in conservation and restoration and help designing adequate management

strategies for an uncertain future. Here, we review the use of spatially explicit models
Subject Editor: Henrique Pereira for decision support and to identify key gaps in current modelling in conservation
Editor-in-Chief: and restoration. Of 650 reviewed publications, 217 publications had a clear manage-
ens-Christian venning ment application and were included in our quantitative analyses. Overall, modellin
Jens-Ch CS ppl d luded q lyses. Overall, modelling
Accepted 31 August 2021 studies were biased towards static models (79%), towards the species and population

level (80%) and towards conservation (rather than restoration) applications (71%).
Correlative niche models were the most widely used model type. Dynamic models as
well as the gene-to-individual level and the community-to-ecosystem level were under-
represented, and explicit cost optimisation approaches were only used in 10% of the
studies. We present a new model typology for selecting models for animal conservation
and restoration, characterising model types according to organisational levels, biologi-
cal processes of interest and desired management applications. This typology will help
to more closely link models to management goals. Additionally, future efforts need
to overcome important challenges related to data integration, model integration and
decision-making. We conclude with five key recommendations, suggesting that wider
usage of spatially explicit models for decision support can be achieved by 1) developing
a toolbox with multiple, easier-to-use methods, 2) improving calibration and valida-
tion of dynamic modelling approaches and 3) developing best-practise guidelines for
applying these models. Further, more robust decision-making can be achieved by 4)
combining multiple modelling approaches to assess uncertainty, and 5) placing models
at the core of adaptive management. These efforts must be accompanied by long-
term funding for modelling and monitoring, and improved communication between
research and practise to ensure optimal conservation and restoration outcomes.
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Introduction

Biodiversity is continuing to decline worldwide (Pimm et al.
2014, Davis et al. 2018) despite repeated policy commitments
to reduce the rate of loss (Mace et al. 2018). As awareness
about the risks that the climate and biodiversity crises pose
to societal well-being is increasing (IPBES 2019), the United
Nations (UN) has called out the UN Decade on Ecosystem
Restoration 2021-2030 to protect and revive ecosystems
all around the world and to ensure integrity and resilience
of our biosphere. Conservation and restoration actions are
costly while time and financial resources for them are scarce
(McCarthy et al. 2012). We should thus use our best avail-
able science to guide global actions.

A structured decision-making process can help to allocate
limited resources efficiently (Fischer et al. 2009, Wintle et al.
2011, Guisan et al. 2013). Necessary steps involve identify-
ing the problem and formulating objectives, defining pos-
sible actions and assessing their associated costs, evaluating
the effectiveness of alternative actions with respect to the
objective, and taking decisions based on cost—benefit trade-
offs. This can be done in a purely heuristic manner or by
means of quantitative modelling. Models are cost-effective
and useful tools to summarise our current understanding of
biological phenomena and complex ecosystem processes, to
explore management options, to assess feasibility and poten-
tial success of restoration and conservation measures, and to
predict the effect of multiple global change drivers on biodi-
versity and ecosystem functioning (IPBES 2016). Essentially,
they allow us to answer ‘what if” questions and to explore the
potential effectiveness of different actions prior to implemen-
tation. Thus, models can help to move away from a reactive
mode of decision-making to a proactive mode that aims to
anticipate potential effects of global change and alternative
management scenarios (Winde et al. 2011, IPBES 2016).

In both conservation and restoration, it is crucial to iden-
tify suitable sites for action and the target biodiversity and eco-
system components and processes that should be conserved
or restored. Under ongoing global change, management
decisions should also consider the role of transient dynam-
ics. First, species and ecosystems may not be at equilibrium
with their environment but could exhibit legacy effects. In
systems with a time-delayed response, for example, extinction
debts due to past habitat loss (Semper-Pascual et al. 2021),
even immediate conservation actions may not be able to halt
biodiversity loss in its entirety. Second, biodiversity and eco-
systems respond dynamically to global change, and conserva-
tion actions need to anticipate these dynamics (Aratjo et al.
2011, Oliver et al. 2016). For example, for range shifting
species, static protected areas may not be sufficient for pre-
serving metapopulation viability into the future, but climate
change-induced range shifts may need to be facilitated by
adequate stepping stones and dynamic approaches to conser-
vation (Wiens et al. 2011, Alagador et al. 2014, Synes et al.
2020). Last, restoration typically requires the identification
of a reference state for species and ecosystem recovery. Yet,
the historic equilibrium state of an ecosystem, for example

the Pleistocene reference, might be unknown or impossible
to restore due to extinctions of keystone species or might
be inappropriate as a reference in the face of rapid climate
change (Harris et al. 2006, Higgs et al. 2014). Effective con-
servation and restoration planning thus needs to incorporate
considerations about transient dynamics and future climate
change and needs to balance between conserving current or
restoring past ecosystems in planning for resilient systems for
the future.

Here, we ask how models can support conservation and
restoration planning in a changing world. More specifically,
we conduct a quantitative review to assess the current state
of spatially explicit models for decision-support in animal
conservation and ecosystem restoration. We add to recent
reviews of the biodiversity modelling literature (Urban et al.
2016, Zurell 2017, Briscoe et al. 2019) by explicitly asking
how different model types have been used to guide pro-active
decision-making in conservation and restoration. The litera-
ture review is limited to animals to keep the breadth of avail-
able model types focussed. Models cover static to dynamic
approaches on various organisational levels, from genes to
ecosystems (Box 1). We consider a broad range of manage-
ment applications in conservation and restoration, ranging
from population reinforcement and connectivity to disease
control and rewilding (Box 2). Finally, we analyse the identi-
fied case studies according to different modelling and man-
agement characteristics. More specifically, we ask whether
specific model types are associated with specific management
applications, what kind of prioritisation methods are typi-
cally used to inform management, and whether any biases
persist in terms of considered ecological processes, ecosys-
tems, regions, taxonomic group and threats. This will help
elucidate critical gaps and biases in model-based decision
support and identify future opportunities and challenges for
more widespread usage.

Model-based decision support for
conservation and restoration

Ecological models are often classified into correlative and pro-
cess-based approaches (Dormann et al. 2012, Briscoe et al.
2019). Correlative or phenomenological models rely on
statistical approaches to relate a specific biodiversity facet,
for example species occurrence, to environmental predic-
tors. Most prominent examples of correlative approaches
in biodiversity and wildlife research are correlative ecologi-
cal niche models (Zurell et al. 2020). In contrast, process-
based or mechanistic approaches aim to establish causal links
between ecological and environmental variables and explic-
itly describe the processes that underpin certain ecological
or evolutionary phenomena. Important processes include
physiology, demography, dispersal, species interactions and
evolution (Urban et al. 2016, Cabral et al. 2017). Although
the distinction of correlative versus process-based repre-
sentations is important, models can also be classified into
static models that predict equilibrium states and dynamic
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Box 1: Spatially explicit model types in conservation and restoration

Static models typically assume equilibrium and predict stationary states. The modelled relationships have no indepen-
dent time variable, but time can be incorporated implicitly through variation of the considered predictor variables.

* Ecological niche models (ENM) aim to quantify and map the determinants of the species ecological niche. We

broadly summarise correlative and mechanistic niche models under this category. Correlative species-environment
relationships relate the observed biodiversity facet (e.g. occurrences or abundances) at each site with a set of abiotic
and/or biotic environmental variables (e.g. correlative species distribution model, resource selection function, static
occupancy model) (Zurell et al. 2020). Mechanistic niche models establish causal links between species fitness and
environmental, mostly (micro-) climatic, variables based on biophysical principles (Kearney and Porter 2009). As
output, they predict vital rates such as survival or reproductive output.

Static connectivity models (Con) assess how well habitat patches in a fragmented landscape (i.e. habitat/matrix con-
figuration) are connected by the movement of a target species. This assessment can be based solely on Euclidian dis-
tance but often considers the site-specific resistance to dispersal, for example, modelled as a function of environmental
variables (e.g. circuit theory, least-cost path analysis or graph theory measures) (McRae et al. 2008).

Static macroecological model (MEM) are correlative models that relate macroecological or macroevolutionary
properties (e.g. species richness, trait patterns) with spatial characteristics (e.g. species richness regression models)
(D’Amen et al. 2017).

represented.

Dynamic models explicitly model processes and changes in time. The models include an independent time axis along
which the modelled state evolves, such as species abundance or genetic diversity. Therefore, transient dynamics can be

* Individual-based models (IBM) simulate the status of each single individual or agent through time and therefore

model higher-level patterns (e.g. population abundance or relative proportion of genotypes) as emergent from indi-
vidual behaviour (Grimm and Railsback 2005). Depending on the time scale, IBMs can consider several processes,
for example annual cycles of survival, reproduction and dispersal or daily cycles of foraging and movement. They can
also include genetic dynamics (Bocedi et al. 2021).

Patch occupancy models (POM) describe spatial distribution of populations as the result of two underlying pro-
cesses, colonisation and extinction. The colonisation and extinction probabilities are often modelled as a function of
environmental variables and sometimes as a function of the patches pairwise distance (Hanski and Thomas 1994,
MacKenzie et al. 2003).

Population-based models (PBM) explicitly model the growth and dispersal of populations in a landscape. Each cell
or patch contains a local population with site-specific reproduction and survival, and different local populations are
connected by dispersal (Ak¢akaya 2000).

Integrated assessment models (IAM) integrate models over several disciplines and aim to describe the complex
relationships between environmental, social and economic drivers of biodiversity dynamics (IPBES 2016). At the
moment, they are rarely used for predicting biodiversity, and in the few existing examples, biodiversity change is not
always modelled as a dynamic system property (Kapitza et al. 2021).

General ecosystem models (GEM) simulate ecosystem dynamics based on mechanistic relationships between envi-
ronmental variables and different trophic levels within an ecosystem, from primary production to higher trophic
levels. These relationships can be modelled, for example, in the form of explicit energy flow and/or nutrient cycling
(Harfoot et al. 2014) or in the form of interaction networks (Baker et al. 2016).

models that simulate time-dependent changes in the state
of a system. Both categories can include phenomenological
and mechanistic aspects (Box 1). For example, niche-based
models (ENM) can include not only correlative ENM, such
as resource selection functions and static occupancy models,
but also mechanistic ENM (Kearney and Porter 2009). We
regard this distinction of static versus dynamic models as
more useful in the context of conservation and restoration
under global change as it emphasises the ability of the differ-
ent models to take into account transitional stages, and we
will thus distinguish between these two broad model catego-
ries throughout this review.

Models have been frequently used in the context of conser-
vation and risk assessments. Aragjo et al. (2019) found that
among the ca 6000 publications that have been published on
correlative ENM between 1995 and 2015, over half of the
studies had a clear focus on future scenarios, conservation
or restoration. Yet, Cayuela et al. (2009) and Guisan et al.
(2013) highlighted that only 1-5% of correlative ENM stud-
ies published since 1995 produced clear management deci-
sions. Recently, Hunter-Ayad et al. (2020) reviewed static
and dynamic models for informing species reintroductions
and provided a modelling guide from individual to com-
munity level. However, a quantitative review on the current
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Box 2: Type of management applications in conservation and restoration

Species conservation: Practise of preservation and protection of wildlife and their habitats. A species conservation
approach can be focused on individual species or groups of species with common needs or common ecological char-
acteristics, thus ranging from conservation of specific populations to the protection of umbrella species or keystone
species that are important for the entire ecosystem.

Habitat conservation: Management practise that seeks to conserve, protect or restore landscapes and ultimately
prevent ecosystem degradation. Conservation of habitat involves improving the conservation status of the habitat
structure and components, as well as the interactions among these components and with the environment.

Spatial prioritisation: The process of identifying priority areas where best to allocate conservation or restoration efforts
as the best trade-off between available resources and conservation or restoration gain. Reserve selection is an applica-
tion of spatial prioritisation to plan and design protected areas that contribute to species and habitat conservation.
Harvest management: Conservation activity which includes protection, maintenance and sustainable utilisation of
species populations through hunting and fishing. For example, reducing density and abundance of a population to
keep its impact on the ecosystem at an acceptable level.

Connectivity: Restoration and conservation applications that are dedicated towards managing space such that viable
populations of species can survive, evolve, move and interconnect within and between suitable areas. Connectivity
combines a description of the physical landscape structure with an organism’s response to that structure.
Reintroduction/translocation: Restoration activity that involves the intentional relocation of living organisms from
one area to another (IUCN 2013). There exists a broad range of terms that highlight different purposes and circum-
stances of this activity, for example differentiating whether the reintroduction does or does not occur in the historical
distribution range of the species (reintroduction versus assisted colonisation and ecological replacement) or whether
conspecifics are present in the region or not (reinforcement versus reintroduction) (Seddon et al. 2014).

Ecosystem restoration: Interventions to assist the recovery of ecosystems that have been degraded, damaged or
destroyed, as well as conserving the ecosystems that are still intact (IPBES 2018). Rewilding is a form of ecosystem
restoration that involves the reestablishment of self-regulating ecosystems by reorganising and regenerating ecosystem
functionality while reducing human intervention (du Toit and Pettorelli 2019, Perino et al. 2019, Svenning 2020).
Disease/invasive control: Activity of regulation or management of an organism or pathogen that impacts adversely
on ecosystems. Activities include exclusion, repulsion, physical treatment or removal (e.g. management techniques to

control invasive alien species).

usage of static and dynamic models in decision-making for
various conservation and restoration applications, and from
the gene to ecosystem level, is still missing.

We assessed the state-of-the-art of model-based decision
support for conservation and restoration using a quantitative
literature review. To this end, we conducted a Web of Science
search on 9 February 2021, searching for studies employing
different model types (Box 1) for specific management appli-
cations (Box 2) in the period 1900-2021 (for a complete list
of keywords cf. Supporting information). We initially identi-
fied 5179 papers, which we further refined to papers that fell
under the Web of Science category ‘biodiversity conserva-
tion’, yielding a list of 650 papers. We screened these and
only kept papers that had a clear management application
(Box 2) and that provided some form of spatial planning
and decision support. The latter requirement was met when
at least a map of the status quo was derived from the model
and presented. Papers that had potential implications for
conservation but did not provide a basis for spatial planning
and management decisions were excluded. The final list con-
tained 217 research articles that met our inclusion criteria.

For each selected research article, we recorded different
information about the models and case studies. First, we
recorded model type (static versus dynamic; represented as

0/1), the ecological level being modelled (genes — individual
— population — community — ecosystem; represented as an
ordinal variable), the processes considered (sensu Urban et al.
2016: environmental response, physiology, demography, dis-
persal, interspecific interactions and evolution; each repre-
sented as 1 if the process was considered and 0 otherwise),
the number of species covered and the spatial resolution and
spatial extent (all three variables were represented as ordinal
variables). Based on these 11 variables, we ran a non-metric
multidimensional scaling (NMDS) analysis to identify gra-
dients of the highest variation between typical model types,
processes, and scales (Supporting information). From the 217
reviewed articles, 155 studies contained information for all
relevant variables and were included in the NMDS. Second,
we recorded additional information for each paper related to
the type of management application (Box 2), prioritisation
method (mapping, gap analysis, global change scenario, man-
agement scenario, cost optimisation), threats (land/sea use
change, overexploitation, pollution, invasive species and dis-
ease, climate change), essential biodiversity variable (genetic
composition, species populations, species traits, community
composition, ecosystem function, ecosystem structure), eco-
system type, geographic region, taxonomic group, and tem-
poral dimension. To identify spatial and thematic gaps and
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biases in the concurrent literature, we analysed the relative
proportion of papers falling into these categories (using all
identified papers n=217) and how these categories correlated
with the NMDS axes (n=155). A full list of information
recorded in the review is provided in Supporting informa-
tion. The final list of papers including their classifications is
available from Dryad (Data availability statement).

Overall, we found substantial variation in the relative
frequency of model types, management applications, eco-
system types, taxonomic groups, relevant threats, and the
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focal level of ecological organisation. The ordination con-
verged with a stress value of 0.172, indicating a fair but not
excellent representation of pairwise dissimilarities in two-
dimensional Euclidean space (Clarke 1993, Dexter et al.
2018). The first NMDS axis mainly represented the gradi-
ent from static to dynamic and the processes dispersal and
demography, while the second axis mainly represented spa-
tial resolution and extent and the inclusion of environmen-
tal responses (Fig. 1a). Static models were used more often
than dynamic models (79% vs 21%), with a particularly
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Figure 1. Ordination results. (A) Biplot showing the ordinated studies (points) and considered variables projected into ordination space
(arrows). (B)—(D) Distribution of model types (B), management applications (C) and prioritisation method (D) across ordination space.
Arrow lengths in plots (A) and (C) are proportional to the correlation of the respective variables with the ordination configuration but
adjusted to fit the size of the plot. Thus, arrow lengths are not comparable among plots. Instead, significant variables are highlighted in blue.
We only included those studies in the ordination (non-metric multidimensional scaling, NMDS) that contained information for all relevant
ordination variables (n=155). (ENM: ecological niche model; CON: connectivity model; MEM: macroecological model; IBM: individ-
ual-based model; POM: patch-occupancy model; PBM: population-based model; IAM: integrated assessment model; GEM: general eco-

system model).
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strong representation of niche-based models (65%; Fig. 1b).
In line with Urban et al. (2016), we found that the envi-
ronmental response of the focal ecological unit was most
frequently modelled (93% of studies). Among the other
processes, dispersal (19%) and demography (20%) were
considered regularly, while interspecific interactions (7%),
as well as physiology and evolution, were rarely considered
(both <19%). Only 29% of studies modelled multiple pro-
cesses simultaneously.

Most studies focussed on conservation rather than restora-
tion, with species and habitat conservation being the most
frequent applications (44% and 31%, respectively), while
applications related to ecosystem restoration made up less than
5% of the studies, reintroduction 3%, and translocation less
than 1%. There was a tendency that restoration applications
such as reintroductions were rather addressed with more com-
plex dynamic models while species conservation applications
mostly relied on static models (Fig. 1c). Recommendations
and decision-making were typically informed by current
mapping (46%) or exploration of different management sce-
narios (26%), whereby management scenarios were primarily
explored in dynamic models (Fig. 1d). Explicit cost—benefit
optimisation was only used in 10% of the studies, a gap anal-
ysis was carried out in 12%), and global change scenarios were
addressed in 5% of the studies.

Commonly cited (non-mutually exclusive) threats were
land/sea use change (56%) and overexploitation (27%),
while climate change (11%), pollution (5%), and invasive
species and disease (7%) were mentioned less frequently as
study motivation (Fig. 2a). In 16% of the studies, the threats
could not be assigned to one of the major five threat cat-
egories (marked as ‘other’ in Fig. 2a). Studies covered all
continents whereby half of them were carried out in Europe
and North America (Fig. 2b). Also, there was a bias towards
(semi-) natural terrestrial ecosystems, in particular towards
forests (47%) and grasslands (41%). The spatial resolution
was < 10 km for 90% of the studies. Most studies focus on
the population level and, thus, from the six classes of essential

(A) (B)

Threats Continent

EXPL INV  POL

Europe

LU CLIM

LU: Land/sea use change

EXPL: Overexploitation

CLIM: Climate change other
INV: Invasive species and disease

POL: Pollution

North America

biodiversity variables (EBVs) (Pereira et al. 2013), the EBV
class ‘species populations’ was overrepresented (72%; Fig. 2¢).
Taxonomically, the majority of studies focussed on a single
taxonomic group (82%), and most studies included mammals
(62%) and birds (30%), followed by reptiles (11%), amphib-
ians (9%), invertebrates (9%), fishes (4%), and microbes (<
1%). Half of all studies focused on single species (Supporting
information). We could not find any temporal trends in the
relative use of static versus dynamic models or for attempting
predictions into the future (Supporting information).

A model typology for animal conservation
and restoration

Increasing awareness of the importance of predicting conser-
vation and restoration outcomes, together with the increas-
ing availability of spatial data, has led to the development
and application of a broad range of spatially explicit models
to inform conservation and restoration actions (Box 1). Our
quantitative review highlighted important gaps and biases in
the current use of these models with a strong bias towards
static models, towards the species and population level, and
towards conservation (rather than restoration planning).
Some advantages and disadvantages of different model types
have been discussed in a few recent reviews (Cabral et al.
2017, Zurell 2017), and some authors also provide initial
guidance for selecting appropriate models for specific appli-
cations and goals (Briscoe et al. 2019, Hunter-Ayad et al.
2020). Yet, we are still missing a model typology that captures
the entire breadth of spatially explicit models and matches
these with ecological levels and relevant processes and, in par-
ticular, with specific management applications in animal con-
servation and restoration. Such a model typology could pave
the road for more cost-effective and targeted use of modelling
in systematic conservation and restoration planning in order
to safeguard animal species and communities as well as entire
ecosystems against ongoing global change.

Antarctica ()
\ EBV class
GC
South Aus- EF ES
America tralia
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Africa
GC: Genetic composition
SP: Species populations
ST: Species traits cc
. CC: Community composition
Asia EF: Ecosystem functioning

ES: Ecosystem structure

Figure 2. Relative proportions of studies addressing different (A) focal threats, (B) continents and (C) essential biodiversity variables (EBVs).
Focal threats (A) were non-mutually exclusive across the considered studies (n=217).
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Figure 3. Typology of spatially explicit models for conservation and restoration, typical management applications and relevant ecological
processes at different ecological levels. We list the relevant ecological processes at those ecological levels where they would most naturally be
modelled. Boxes for model types and management applications indicate the ecological levels at which these models and applications are
typically used or the ecological processes that are typically considered when making model-based decisions, while the arrows indicate the

potential to consider other ecological levels and processes.

Here, we aim to fill this gap and provide a new model
typology matching available spatially explicit model types
with animal conservation and restoration goals (Fig. 3). This
model typology recognises the different ecological levels from
genes to ecosystems and the relevant ecological and evolution-
ary processes that are relevant at these organisational levels. It
allows matching conservation and restoration goals with dif-
ferent static and dynamic model types. We deliberately kept
the model typology rather general, indicating useful model
types but without identifying specific model implementa-
tions, although a non-exhaustive list of current implemen-
tations is provided in the Supporting information. In the
model typology, we indicate which spatially explicit model
types could be extended to lower or higher ecological levels
than is currently done (Fig. 3). Most of the conservation and
restoration applications have been approached at the popula-
tion level, using static models. However, dynamic models are

generally better suited to capture patterns or processes at the
far end of the ecological spectrum (genes, and ecosystems;
Fig. 3). The outstanding questions are thus why dynamic
models are not more routinely used in animal conservation
and restoration and likewise why the gene-to-individual and
the community-to-ecosystem level are underrepresented in
the literature although the modelling frameworks are princi-
pally available. In the following, we briefly discuss the poten-
tial advantages of dynamic models as well as recent advances
in modelling frameworks across ecological levels, while
we reflect on further challenges and opportunities in the
next section.

From static to dynamic models

It is important to acknowledge that choosing between a static
or dynamic modelling approach will determine the kind of
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Figure 4. The use of spatially explicit models to inform different conservation and restoration objectives. Static models (ENM: ecological
niche model; MEM: macroecological model; Con: connectivity model) are most useful at selecting sites and planning abiotic interventions.
These models require comparably simple information for model calibration. Dynamic approaches (POM: patch-occupancy model; PBM:
population-based model; IBM: individual-based model; IAM: integrated assessment model; GEM: general ecosystem model) can help
planning biotic interventions, for example, designing conservation and restoration measures to ensure or increase population viability or
ecosystem functioning over time. These dynamic modelling approaches require increasingly complex data for calibration. The listed objec-
tives are not exhaustive. All management objectives can be optimised by comparing model outputs against desired targets, for example
specific targets for habitat amount, population abundance or ecosystem intactness.

management goals that can be informed by models (Fig. 4).
Static models will be most useful to inform site selection in
the widest sense (e.g. habitat or climate suitability, corridors)
and plan abiotic interventions (e.g. building habitat, reme-
diating physical conditions). By contrast, dynamic models
can inform biotic interventions that are necessary to conserve
or restore population viability and ecosystem functioning,
for example quantifying the required number, timing, and
locations of reintroductions to ensure viable populations
(Ovenden et al. 2019) or ecosystem recovery. The strong
bias towards static models in the reviewed literature indicates
that currently model-based decision support in animal con-
servation and restoration is focusing on selecting sites and
site management, while modelling population viability and
ecosystem functioning in a spatially explicit way is less often
done. This means that management decisions are mostly
based on predicted habitat extent or quality and less so on
predicted temporal population dynamics or community sta-
bility and ecosystem intactness (Fig. 4).

Generally, dynamic models for decision support would be
preferable over static models in cases where the timing of a
certain management action is of importance (e.g. in sequen-
tial recovery) or when the success and time horizon of a cer-
tain management action for population viability or ecosystem
functioning should be assessed a priori (e.g. in reintroduction
planning). Also, under scenarios of global change, dynamic
models have been shown to outperform the predictive per-
formance of static models (Zurell et al. 2016, Fordham et al.
2018). By explicitly accounting for transient dynamics of
biological processes such as dispersal, demography and evo-
lution, among others, dynamic models are better able to pre-
dict the response of different ecological levels to management
actions or external threats and to predict potential time lags
(Briscoe et al. 2019). Yet, dynamic modelling approaches
typically need more data to inform the different biologi-
cal processes being modelled (Fig. 4) (Urban et al. 2016,
Briscoe et al. 2021) and also a solid a priori understanding of
the system or extensive model testing to adequately capture
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the structural uncertainty, meaning defining the adequate
model complexity (Zurell et al. 2016). Thus, data availabil-
ity and accessibility of methods remain key barriers that pre-
vent more widespread use of dynamic modelling approaches
(Briscoe et al. 2019).

Models across ecological levels

Our quantitative literature review further indicated that the
gene-to-individual level as well as the community-to-ecosys-
tem level were particularly underrepresented (Fig. 2c). This
strong bias towards populations and species allows only a
limited view of biodiversity changes as set out by the EBV
framework (Pereira et al. 2013). Successful conservation and
restoration of ecosystems need to move beyond single species
or habitat approaches, since biological impoverishment and
threats act at multiple levels of organisation (Noss 1990).

To date, genetics are rarely considered in spatially explicit
models, although genetic and evolutionary processes are now
recognised to be key elements to consider in designing effec-
tive conservation and restoration strategies (Hoffmann and
Sgrd 2011, Mijangos et al. 2014, Hoffmann et al. 2015,
2021). Conservation and restoration strategies that take into
account genetics and evolution are operating across two main
objectives: increasing current population fitness through
genetic rescue and increasing genetic diversity to maintain
adaptive potential in the face of changing environments (i.e.
evolutionary rescue) (Weeks et al. 2011, Derry et al. 2019,
Gaitdn-Espitia and Hobday 2020). Hitherto, relevant evolu-
tionary processes such as variation and loss of genetic diver-
sity by genetic drift, reduction in fitness due to inbreeding
depression, and adaptive evolution have mostly been consid-
ered in spatiallyimplicit simulations to perform ‘genetic via-
bility analyses’ in single small and often isolated populations
(Hoban et al. 2012, Grueber et al. 2018). Spatially explicit
models including genetics have rarely been used (here, <1%
of reviewed studies) but show large potential. For example,
Mims et al. (2019) assessed how reintroduction strategies,
life-history variation, and riverscape structure affect the
demography and genetic diversity and structure of reintro-
duced bull trout populations in Washington State, USA.
At a larger scale and considering adaptive genetic variation,
Bush et al. (2016) projected the distribution of 17 species
of Australian drosophilids with genetic variation underlying
their climatic tolerances and showed that drosophilids might
have the capacity to adapt under realistic scenarios of climate
change. Thus, models that consider evolutionary responses to
changing or new environments and in a spatially explicit way
are particularly useful for studying the interaction between
genetic and demographic processes and alternative manage-
ment strategies (Pavlova et al. 2017, Kelly and Phillips 2019).

Genetic threats and adaptive potential are two fundamen-
tal pieces of the puzzle for managing and restoring species,
communities, and ecosystems, such as guiding provenanc-
ing and identifying reinforcement needs (Fig. 4). Yet, active
interventions aimed at genetic restoration in the broader
sense have been rarely implemented in practise because of

uncertainties related to potential negative effects such as out-
breeding depression, swamping of locally adapted genotypes,
and genetic homogenisation (Weeks et al. 2011, Bell et al.
2019, Hoffmann et al. 2021). Dynamic and process-based
models can be a powerful tool for shedding light on the
complex interactions between evolutionary and ecological
processes as well as feedbacks and trade-offs (Tallmon et al.
2004, Whiteley et al. 2015, Hoffmann et al. 2021) and on
the likely response of the system to specific management
strategies and future global change scenarios. Additionally,
using spatially explicit models can help to evaluate the poten-
tial genetic consequences of higher-level management inter-
ventions, meaning actions that are not explicitly aimed at
genetic restoration but, for example, at restoring or conserv-
ing habitat or connectivity between populations. As promis-
ing new applications are emerging that integrate genetic and
evolutionary processes with other relevant processes such
as physiology, demography, dispersal and/or interspecific
interactions in different combinations and levels of sophis-
tication (Bush et al. 2016, Landguth et al. 2017, Okamoto
and Amarasekare 2018, Haller and Messer 2019, Cotto et al.
2020, Bocedi et al. 2021, Malchow et al. 2021), modelling
biodiversity from the gene to ecosystem-level becomes pro-
gressively more feasible and opens exciting new perspectives
for conservation and restoration.

At the other end of organisational levels, community-level
and ecosystem models were underrepresented in the reviewed
applications in animal conservation and restoration. General
ecosystem models (GEMs, Box 1) aim to predict the complex
interactive effects of multiple species and trophic levels in the
landscapes (Geary et al. 2020) and are thus particularly use-
ful to plan and assess the potential efficiency of restoration
measures for ecosystem functioning (Fig. 4). For example,
Baker et al. (2016) devised an ensemble ecosystem modelling
method integrating a large number (ensemble) of ambigu-
ous species interaction networks and dynamic community
simulations to explore potential effects of wolf reintroduction
to Yellowstone National Park and dingo reintroduction to a
national park in Australia. The simulations allowed assessing
relative increases and decreases of plant species abundance,
as well as of different herbivores and meso-predators abun-
dance, and identifying species that would be important to
monitor to avoid any negative effects from reintroduction.
Pesendorfer et al. (2017) used a similar approach to assess
how the reintroduction of seed dispersers could acceler-
ate the recovery and expansion of natural tree communities
(passive restoration) in California’s Channel Islands National
Park. Such ecosystem models allow ecologists to complement
individual-to-population level analysis of biodiversity pat-
terns with community and ecosystem-level modelling that
builds on ecological theory. For example, in the mechanistic
GEM ‘Madingley’, ecosystem structure and functions emerge
from individual-level (or cohort-level) processes such as for-
aging and growth and interspecific interactions within grid
cells, and dispersal between grid cells (Harfoot et al. 2014,
Hoceks et al. 2021). The Madingley model is not species-spe-
cific but relies on functional groups of similar body mass and

85U80|7 SUOWWOD 3A a1 3|l dde 8Ly Aq peusenob e sejolie YO ‘SN Jo Se|nJ 1o} ArIqIT8UIUO A8] 1M UO (SUORIPUOD-PUe-SW /W00 A3 M Afelq 1 [BUl|UO//:SANY) SUORIPUOD pUe SWiS 18U} 89S *[2202/TT/8z] Uo AkiqiTauliuo A1 ‘Usepieqy JO AseAIuN Aq 28250 6008/ TTTT'OT/I0p/W0D A8 |IM Aeiq 1 BuluO//SdnY WoI) papeo|umod ‘v ‘220z ‘2850009T



trophic level. It could thus be particularly useful in under-
studied regions where species data are sparse, but knowledge
of ecosystem-level properties can be applied (Purves et al.
2013). Recently, a novel application of the Madingley model
assessed the sustainability of bushmeat hunting across envi-
ronmental gradients in Africa (Barychka et al. 2019). These
examples show that ecosystem-level modelling provides the
means to assess the efficiency and resilience of ecosystems and
their functioning and thus has a high potential to inform eco-
system restoration efforts.

Challenges and opportunities

Despite the potential of dynamic approaches to predict pop-
ulation viability and ecosystem functioning and manage for
transient dynamics (Fig. 4), our results indicated a strong bias
towards static models. Also, most studies focus on single or
few species and few taxonomic groups (Supporting informa-
tion). This underlines that important data and modelling
challenges remain and need to be overcome for operation-
alising models over multiple taxonomic and spatiotemporal
scales (Urban et al. 2016, Briscoe et al. 2019). Additionally,
our results indicated underuse of cost optimisation frame-
works such as spatial conservation prioritisation (Ball et al.
2009). Broader exploration of modelling options paired with
explicit prioritisation methods seems particularly promising
as this could provide cost-effective tools to assess efficiency of
different management options to achieve clear conservation
and restoration objectives (Guisan et al. 2013). In the fol-
lowing, we discuss current challenges and opportunities for
using spatially explicit models for informing animal conser-
vation and restoration. Overall, we believe that the challenges
go beyond the availability of appropriate model frameworks,
data integration and optimisation methods, but we need
more knowledge transfer between modellers and practitio-
ners as well as applied scientists to make existing and newly
emerging modelling frameworks more accessible and easier to
use and to provide (best-practise) guidelines for their usage.

Data challenges

Previous reviews proposed that the lack of data is hamper-
ing more widespread use of dynamic models in global change
research (Urban et al. 2016, Briscoe et al. 2019). It is undis-
puted that dynamic and mechanistic models require more
complex data than simple correlative models (Dormann et al.
2012). For example, while correlative species distribu-
tion models require only simple snapshot occurrence data,
patch-occupancy models need time-series data of occurrence
and population-based models need demographic informa-
tion and/or time series of abundance for calibration (Box
1, Fig. 4). Further, model evaluations on simulated data as
well as on empirical data have shown that predictive accu-
racy of dynamic models increases when fitted to longer time
series, with more information content on transient dynam-
ics (Pagel and Schurr 2012, Briscoe et al. 2021). Such time

series data are only available for limited taxonomic groups
and regions. Typically, spatiotemporal data are particularly
scarce for rare species that often are of high conservation
concern. Recent studies show promise for using habitat
and demographic proxies in such cases (Bleyhl et al. 2021).
Additionally, we see great potential for extending available
time-series data through emerging new sensor and genetic
techniques and approaches that will improve our ability to
document biodiversity dynamics and patterns but will also
provide a more complete, holistic picture of ecosystem res-
toration (Pimm et al. 2015). Emerging techniques include
citizen science, efficient automated and semi-automated bio-
acoustics and camera-trap devices, remote sensing techniques
(e.g. spaceborne, airborne, radar, lidar), genomics (popula-
tion genomics, meta-omics and genome editing) (Breed et al.
2019), and the accessibility of retrieving DNA from environ-
mental samples (environmental DNA — eDNA) (Bush et al.
2017, Kissling et al. 2018a, b). These methods allow sampling
and biomonitoring of ecosystems at high resolution and in
real-time, filling data gaps between fine-scale and ecosystem-
scale observations and detecting systematic changes in ecosys-
tems. An outstanding challenge is to improve the integration
of these data types in monitoring and modelling. Here, a
promising and still underexploited avenue is provided by
more flexible computational methods such as Approximate
Bayesian Computation and pattern-oriented modelling that
can help integrating heterogeneous data sources into simula-
tion models (Hartig et al. 2011, Grimm and Railsback 2012,
Gallagher et al. 2021).

Data challenges also remain for improving data avail-
ability of relevant environmental drivers, in past, present,
and future (Urban et al. 2016). While most studies in our
review mentioned direct effects of human activities (e.g. land-
use change, overexploitation) as the dominant threat in the
studied system, the impact of indirect anthropogenic effects
such as climate change and ocean acidification is becoming
increasingly relevant (Uthicke et al. 2013, Urban 2015).
Designing effective conservation measures under these
dynamic and non-local threats requires a detailed under-
standing of their individual and joint effects (Oliver and
Morecroft 2014). For example, habitat loss and fragmen-
tation not only lead to local extinctions and reduced gene
flow among populations but also limit the ability of species
to track their environmental niche under climate change
(Warren et al. 2001). Similarly, habitat degradation and cli-
mate change may put the native fauna at a competitive dis-
advantage against potential and already-established invasive
species (Foley 2005, Bellard et al. 2013). Likewise, rewilding
apex predators may be unsuccessful in a policy context that
does not regulate poaching (Bleyhl et al. 2021), and riparian
habitat restoration may be ineflicient when pollution sources
are not eliminated first. Quantifying whether stressors affect
biodiversity additively or synergistically requires improved
environmental data, including past time series when study-
ing legacy effects (Semper-Pascual et al. 2021) and future sce-
narios to inform decision-making. A key challenge is thus to
provide integrated scenarios of climate, land use, and other
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anthropogenic pressures at finer spatial resolution in order to
inform regional conservation and restoration efforts.

Modelling challenges

The comparably simple data requirements of static models,
in particular correlative ENMs, are an important but likely
not the only reason for their popularity compared to dynamic
modelling approaches. Another major difference is the acces-
sibility of easy-to-use software implementations and exten-
sive guidance to use ENMs (Zurell et al. 2020). By contrast,
many open-source and cross-platform implementations of
dynamic modelling approaches have only been released com-
parably recently, and less guidance is currently available for
applying them in practise (Supporting information). This
means that it will take time for less experienced modellers and
practitioners to accustom with these approaches. Knowledge
transfer could be improved by providing more dedicated
modelling support in form of extended tutorials and text-
books (as has happened for correlative ENMs) or in form of
support teams. For example, the Climate Change Specialist
Group (CCSG) of the International Union for Conservation
of Nature (IUCN) has established a modelling support activ-
ity providing useful resources and advice to modelling carried
out by the IUCN specialist groups (<http://ccsg-iucn.com/
themes/modelling-support/>). Development of best-prac-
tise guidelines (Aratjo et al. 2019) and standard protocols
(Grimm et al. 2010, 2014, Zurell et al. 2020) can further
facilitate planning, implementation, documentation, and
communication of models and thus improve confidence in
their adequacy for decision-making.

Additionally, several items are still missing from the toolbox
of spatially explicit, dynamic modelling approaches, includ-
ing easy-to-use routines for model calibration and model
selection (Hartig et al. 2011, 2012) as well as for model vali-
dation. While model selection, model averaging and ensem-
ble modelling, and validation of predictive performance are
common practise for correlative ENMs (Roberts et al. 2017,
Dormann et al. 2018), fitting complex simulation models
to data and assessing their predictive performance is still
regarded as cutting-edge and rarely done. Yet, these topics
should receive much more attention in dynamic modelling
approaches. The more complex the models, the more com-
plex are decisions regarding the necessary process detail in the
models (Zurell et al. 2016). This structural uncertainty could
be dealt with by designing adequate model selection strate-
gies for simulation models, or it could be accounted for by
ensemble approaches. Validating predictive performance is
particularly important for assessing uncertainty, when trans-
ferring models to different places and times and when model
predictions are used to inform conservation and restoration
projects, such as species reintroductions (Yates et al. 2018).
For example, measures for preventing invasions and spread
of aliens can be designed based on predictions of invasibility
and establishment potential (Medley 2010, Villemant et al.
2011). Also, hindcasting to past and forecasting to future cli-
mates can help to benchmark and plan trophic rewilding and
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to select suitable sites for species reintroduction (Jarvie and
Svenning 2018). Model transferability has received much
attention in static modelling (Sequeira et al. 2018), and
methodological advances have been made by introducing,
for example, block cross-validation that explicitly tests pre-
dictive accuracy to different places, times, or environments
(Wenger and Olden 2012, Roberts et al. 2017). By contrast,
transferability and predictive accuracy in dynamic modelling
approaches have rarely been assessed explicitly (Trotsiuk et al.
2020), although benchmarking studies showed that model
fit to calibration data is not indicative of predictive accu-
racy under changing environmental conditions (Zurell et al.
2016). More routinely assessing limits to transferability of
both static and dynamic models in space and time in a stan-
dardised way will be crucial for defining their forecast horizon
(Petchey et al. 2015) and for adequately guiding conservation
and restoration efforts under global change. A major step in
this direction will be implementing standard routines for
model validation within dynamic modelling platforms.

Decision-making challenges

As only limited funds and resources are available to spend on
conservation and restoration efforts (McCarthy et al. 2012),
it is crucial to invest the available means efficiently, for exam-
ple by relying on explicit prioritisation approaches. In our
review, most studies provided decision support only in the
form of mapping the status quo, for example by identifying
hotspots and coldspots of biodiversity and threats (Romero-
Muioz et al. 2020), or in the form of a gap analysis, for
example by comparing hotspots with currently implemented
protected areas and management plans. Cost optimisation
approaches were rarely used as a formal decision support tool
(10%), although their proportional use increased compared
to former evaluations (Guisan et al. 2013). Well-validated
spatial models allow the exploration of alternative, pre-
defined management options cither by comparing scenarios
or by adopting a cost optimisation strategy that aims to find
the optimal solution between maximising conservation and
restoration gains and minimising costs (e.g. financial, human
and spatial resources). Cost optimisation relies on defining
an appropriate conservation goal that should ideally reflect
different biodiversity facets, for example taxonomic, phylo-
genetic, and functional diversity (Pollock et al. 2017). Yet,
most studies reviewed here only considered species richness
as model response or focussed on only a single species. Here,
we argue that multi-faceted conservation and restoration tar-
gets should be considered more routinely in decision-mak-
ing. For example, complex models that incorporate processes
from gene to ecosystem level (Fig. 3) will allow cost opti-
misation based on multiple EBVs and can effectively trade
off different biodiversity facets in conservation as well as
the provision of different ecosystem functions and services
in ecosystem restoration. Additionally, using dynamic mod-
els will help anticipating transient dynamics in response to
global change (Fig. 4) and thus bear the potential to plan
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sequential restoration measures (Higgs 2016) and to more
effectively guide adaptative management strategies.

A range of optimisation software is available (Ball et al.
2009, Moilanen et al. 2011) that has traditionally been
applied to static biodiversity information, such as optimising
the representation or number of species or sites. Alagador
and Cerdeira (2020) showed how existing prioritisation
software such as ‘Marxan’ (Ball et al. 2009) and ‘Zonation’
(Moilanen et al. 2011) could be reformulated to optimise
persistence goals under transient climate change dynamics,
yet at the expense of high computational load. New priori-
tisation methods are currently being developed to make use
of machine learning and artificial intelligence (Chades et al.
2017). For example, deep reinforcement learning approaches
(Rolnick et al. 2019) can be applied to the complex chal-
lenges of conservation and restoration of ecological systems.
Again, a key challenge will be making these methods acces-
sible to applied modellers and practitioners in the form
of easy-to-use interfaces or modelling support groups and
establishing best-practise guidelines for aiding model-based
decision-making.

Discussion and conclusion

As ecosystems further deteriorate and our focus shifts from
conservation to restoration, we urgently need more advanced
models to support planning and decision-making under tran-
sient dynamics. To meet the challenges posed by the climate
and biodiversity crises and the growing human population,
we need to provide effective tools for quantifying the trade-
offs between economic and societal well-being, biodiversity,
climate adaptation, and climate mitigation (Leclére et al.
2020, Poertner et al. 2021). Models can greatly aid this deci-
sion-making and uncertainty quantification and should be
used more routinely for guiding conservation and restoration
actions at the local to global level (IPBES 2016).

Our literature review highlighted advances and oppor-
tunities of available spatially explicit modelling approaches
and applications in animal conservation and restoration.
This resulted in a new model typology for matching models
with conservation and restoration goals and for facilitating
model-based decision support. Thereby, our review focussed
on applications in animal conservation and restoration and
thus does not cover the entire breadth of available model-
ling frameworks in ecology, ignoring for example the wide
field of vegetation modelling (Snell et al. 2014). Also, we
only considered modelling studies that had a clear manage-
ment application and were spatially explicit. We took care to
define a set of general taxonomic keywords that would not
bias our search towards terrestrial animals but cannot exclude
that the keywords related to ‘space’ (Supporting information)
have reduced the number of freshwater and marine studies
considered. Nevertheless, we are confident that the identified
studies provide a representative picture of the current state of
spatially explicit models in animal conservation and restora-
tion across regions and realms.

Important gaps for modelling and forecasting biodiversity
at the gene to ecosystem level could be closed by improved
integration of relevant ecological and evolutionary processes
at the different organisational levels (Urban et al. 2016),
improved data integration, and improved integration of cost
optimisation strategies that include multiple biodiversity fac-
ets and transient dynamics. We conclude with a list of explicit
recommendations for improving model-based decision sup-
port in conservation and restoration.

1) Develop a toolbox for conservation and restoration modelling:
For a widespread adoption of models to inform effective
animal conservation and restoration activities, it is critical
that accessibility of modelling tools is improved and their
use is facilitated. This would be substantially enhanced
by the provision of an integrated platform or easy-to-use
toolbox that provided ready access to a suite of models
from across the modelling typology. Strong documenta-
tion, examples of effective model applications, and forum
pages could all be helpful for developing a supportive
developer and user community.

2) Improve calibration and validation of dynamic modelling
approaches: Operationalising dynamic models over large
numbers of species and ecosystems will require efficient
and automated parameterisation and model selection and
will need to integrate different sets of heterogeneous data.
This requires easy access and guidance on advanced cali-
bration methods such as pattern-oriented modelling and
Approximate Bayesian Computation. Additionally, more
routine model validation methods for dynamic model-
ling approaches need to be developed to explicitly assess
predictive accuracy in a standardised way and increase
confidence in these models. Without this information,
it is impossible to know when it is necessary to collect
additional data for updating model parameterisation and
consequent model-based decisions.

3) Develop and harmonise best-practise guidelines across model-
ling approaches: When using models to project the state of
biodiversity and ecosystems in time and space, we need
to make sure that models are aligned with the intended
use and are robust. Best-practise guidelines and standard
protocols for model reporting will facilitate model imple-
mentation and communication and will ensure transpar-
ency and reproducibility. Such best-practise guidelines are
needed in all aspects of model-based conservation and res-
toration planning, including the spatially explicit ecologi-
cal models as well as the decision-making approaches.

4) Use multiple models in combination: For most conservation
and restoration projects that we can envisage, it is likely
that results from more than one model type can be useful
as each model approach has specific strengths and weak-
nesses and can inform different aspects of the project. For
example, if a reintroduction is being planned, an ENM
may help inform where it is best to reintroduce while an
IBM including genetics may help determine how many
individuals should be reintroduced and at what temporal
schedule to ensure effective establishment and long-term
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genetic viability. An ecosystem model may then be useful
to determine the likely broader impacts of the reintroduc-
tion of a species. Further, model validation may result in
varying levels of confidence for alternative model types
or alternative model implementations. Similar to other
disciplines, epistemic uncertainty in the models could
be considered by comparing results from, or by combin-
ing, multiple model types and algorithms in ensemble
approaches.

5) Use models as a core part of adaptive management: Effective
adaptive management requires long-term projects that
couple management, monitoring, and research. The pro-
posed toolbox with improved modelling methods and
best-practise guidelines will allow model-based adaptive
management, which should become an integral part of
conservation and restoration projects. By monitoring
and validating model predictions, and updating model
assumptions and decision-making in an iterative fashion,
model-based adaptive management will allow to identify
and react to early warning signals of a system’s shift and
ensure ecosystem resilience into the future. The availabil-
ity of long-term funding for modelling and monitoring
and improved communication between research and prac-
tise will be key for achieving desired conservation and res-
toration outcomes.
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