

Evolution of reduced dormancy during range expansions

Justin M. J. Travis¹, Poppy Mynard¹ & Greta Bochedi¹

³ ¹School of Biological Science, University of Aberdeen, Zoology Building, Tillydrone Avenue,
⁴ Aberdeen. AB24 2TZ, U.K.

5

6 Abstract

7 There is increasing evidence that life-history traits can evolve rapidly during range expansion
8 and that this evolution can impact the ecological dynamics of population spread. While
9 dispersal evolution during range expansion has received substantial attention, dormancy
10 (dispersal in time) has not. Here, we use an individual-based model to investigate the evolution
11 of seed dormancy during range expansion. When a population is at spatial equilibrium our
12 model produces results that are consistent with previous theoretical studies: seed dormancy
13 evolves due to kin competition and the degree of dormancy increases as temporal
14 environmental variation increases. During range expansions we consistently observe
15 evolution towards reduced rates of dormancy at the front. Behind the front there is selection
16 for higher rates of dormancy. Notably, the decreased dormancy towards the expanding margin
17 reduces the regional resilience of recently expanded populations to a series of harsh years.
18 We discuss how dormancy evolution during range expansion, and its consequences for spatial
19 population dynamics, may impact other evolutionary responses to environmental change. We
20 end with suggestions for future theoretical and empirical work.

21

22

23 **Key words:** Dormancy, Evolution, Invasion, Range shifting, Climate change

24

25 **Introduction**

26 Over the last two decades there has been substantial attention devoted to the role that
27 evolutionary processes can play during range expansions [1], both in invasive species (see
28 reviews by [2–4] and in species expanding their ranges into newly suitable regions under
29 climate change [5–9]. Hybridisation (e.g., [10,11], local adaptation (e.g. [12–15]) and life
30 history evolution (e.g., selfing rates [16]; resistance to herbivores [17]; dispersal behaviour
31 [18,19]) have all been implicated as determinants of either the probability that an introduction
32 leads to an invasion, or the spatial dynamics of the invasion. Similarly, for species shifting their
33 ranges due to climate change, local adaptation and the evolution of a range of life-history traits
34 including dispersal and mating systems (e.g., [6–8]) have been highlighted as having
35 potentially substantial impacts on the range dynamics.

36 In both the invasion literature and the range shifting literature, there has been a major
37 focus on the role that dispersal evolution can play in driving the dynamics of population spread.

38 In an early model Travis & Dytham [20] demonstrated that range expansion may be
39 accelerated as greater rates of dispersal will generally evolve. However, their work showed
40 that when even a weak Allee effect was incorporated, the evolution of increased dispersal was
41 substantially reduced. Further theory, considering the evolution of density-dependent
42 dispersal, has demonstrated that during range expansions selection favours strategies that
43 yield moderate rates of emigration even from patches where density (and intraspecific
44 competition) is very low [21]. Other work has highlighted the distinctiveness of the evolutionary
45 process during range expansion, drawing attention to what has been dubbed spatial sorting
46 [22,23]. In the context of dispersal evolution, high dispersal phenotypes are sorted at the
47 expanding front and are thus likely to reproduce with one another, potentially resulting in
48 individuals of even greater dispersal propensity and ability. In models of species shifting their
49 ranges due to climate change, dispersal evolution can result in elastic margins [5,24]. Elevated
50 dispersal at the expansion front supports sink populations in highly marginal habitat for a
51 transient period after climate change ends and before selection operates to reduce dispersal

52 back to the level expected at a stationary range margin (at which point there is less dispersal
53 to prop up sink populations). Alongside the development of theory, there is increasing
54 empirical evidence for rapid dispersal evolution during range expansions [25–28]. This comes
55 from a range of taxa, for invasions and climate-induced range shifts, and in both natural
56 settings and in experiments. The now classic example for an invasive species is the cane toad
57 invading Australia [19,29,30]. Selection has resulted in substantial changes to multiple
58 dispersal traits that together have resulted in the species now range expanding at least 5 times
59 as rapidly now as in the earlier phase of expansion.

60 While the eco-evolutionary dynamics of dispersal have been well-studied in the context
61 of range expansion, there has been little consideration of the role for what has often been
62 termed ‘dispersal in time’ – i.e., dormancy [31,32]. This is surprising given both how widely
63 dormancy is exhibited within animals, plants and microbes and the substantial role that it can
64 play in population and community dynamics. We lack theoretical predictions into how
65 dormancy should evolve during range expansions and on how this is likely to impact the
66 ecological dynamics of population spread. Similarly, we lack empirical studies documenting
67 potential changes in dormancy during either invasions or climate-driven range expansions.

68 While we lack studies investigating dormancy evolution during range expansions, there
69 is a substantial literature focused on how dormancy evolves in stationary ranges. Theoretical
70 studies have demonstrated that seed dormancy can evolve even in temporally stable
71 environments [33–36], by reducing the number of sibling seeds germinating simultaneously.
72 Heterogeneity in siblings’ dormancy rates reduces kin competition and increases a plant’s
73 inclusive fitness [36,37]. However, it is in temporally variable environments where the
74 strongest selection for seed dormancy is likely to occur [38–40]. Under these conditions
75 dormancy can function as a bet hedging strategy (e.g. [41,42,42]): seed dormancy spreads
76 the risk of germination over time, and is increasingly advantageous the greater the frequency
77 of bad years [43].

78 In addition to work focused on understanding the drivers of dormancy evolution, there
79 is strong evidence of a range of important consequences that dormancy can have on
80 ecological dynamics. This includes the role that dormancy can play in increasing species
81 diversity by enabling coexistence of competitors through the storage effect (e.g. [44,45]), and
82 more generally evidence for the role of dormancy, together with dispersal, in structuring
83 metacommunities [46]. Dormancy can also have substantial impacts on evolutionary
84 processes [47]. The major role dormancy plays in ecological and evolutionary dynamics is not
85 limited to eukaryotes and there has been substantial interest in understanding the causes and
86 consequences of microbial dormancy over the last decade [48,49]. Furthermore, there is
87 interest in considering the eco-evolutionary dynamics of dormancy in the context of cancers
88 [50]. Given the major roles that dormancy can play in driving ecological and evolutionary
89 outcomes across a broad range of systems, it is important that we gain understanding of how
90 range expansions (of eukaryotes, prokaryotes, or even cancer cells) are likely to impact
91 dormancy dynamics.

92 Here we build an individual-based model to investigate the eco-evolutionary dynamics
93 of seed dormancy during range expansions. We run sets of simulations designed to address
94 three key issues. First, we assume a fixed rate of dormancy and ask ***how dormancy***
95 ***influences the rate of a range expansion*** under both temporally stable and temporally
96 variable environments. Second, we determine ***how dormancy evolves during range***
97 ***expansion***, and again consider how this differs under stable and variable environments. Third,
98 we address the question of ***how dormancy evolution impacts the ecological dynamics of***
99 ***range expanding species***, focusing both on the rate of expansion and on the spatial
100 dynamics in recently colonised regions.

101 **The Model**

102 We develop an individual-based, spatially explicit simulation model to investigate the evolution
103 of seed dormancy during range expansion. Simulations take place in an arena of cells
104 (dimensions $x = 400$, $y = 50$), with each cell having a carrying capacity of K adult plants. We

105 model an annual plant reproducing asexually. The model runs in discrete time and the ordering
106 of events is as follows: seed production, seed dispersal, germination, seedlings density
107 regulation. This formulation has much in common with similar models used to tackle a wide
108 range of questions within evolutionary ecology (e.g., [51–54]).

109 Adult plants each produce s seeds. s can either be a constant for the duration of a
110 model run (i.e., temporally constant environment), or can be affected by temporal
111 environmental stochasticity and hence vary from year to year. In the latter case, s at a given
112 year t is given by:

$$113 \quad s_t = \bar{s} * (1 + \varepsilon_t) \quad \text{eqn. 1}$$

114 where \bar{s} is the mean fecundity ($\bar{s} = 5$) and ε is an environmental noise value generated from a
115 first-order autoregressive process [55]:

$$116 \quad \varepsilon_{t+1} = \kappa \varepsilon_t + \omega_t \sqrt{1 - \kappa^2} . \quad \text{eqn. 2}$$

117 Here, κ is the autocorrelation coefficient and ω is a random normal variable drawn from $N(0, \sigma)$,
118 where σ changes the amplitude of the fluctuations. We assume temporally uncorrelated noise
119 (i.e., white noise; $\kappa = 0$) and apply it uniformly across the landscape. Thus, seed production,
120 s , is the same in every patch on the landscape in any given year. We further assume $0 \leq s \leq$
121 10.

122 Each seed has a probability $d = 0.1$ of dispersing. Dispersing seeds move at random
123 to one of their natal cell's nearest eight neighbours. We wrap the landscape across the y-axis,
124 while individual dispersing beyond the edges along the x-axis are lost. After dispersal, all
125 seeds enter a seed bank. Every year, each seed germinates with probability $1 - \gamma$, where γ is
126 the probability of dormancy and can be either constant or determined by the seed's genotype
127 in case of dormancy evolution. Seeds that do not germinate remain in the seed bank with
128 probability $1 - m$, where m is the annual rate of mortality associated with remaining dormant.
129 Following germination, seedling density is regulated (seedling competition), whereby the

130 seedling survival probability is given by $\min(K / N_{seedling}, 1)$, where $N_{seedling}$ is the total number
131 of seedlings present in the cell. All surviving seedlings are then developing to adults and
132 reproduce the following year.

133 In the case of evolution of dormancy, every individual carries a quantitative character
134 (single haploid gene with continuous alleles), γ , that codes for dormancy propensity. We
135 assume asexual reproduction, and seeds inherit their genotype from their parent. There may
136 be mutation events associated with seed production. Mutations to γ occur with probability $\beta =$
137 $0.01/\text{allele/year}$. When a mutation occurs, the individual genotype is altered by adding a value
138 sampled from a uniform real distribution $U(-0.1, 0.1)$. We constrain the genotype such that 0.0
139 $\leq \gamma \leq 1.0$.

140 Initially, we run a set of simulations to establish how a fixed rate of dormancy impacts
141 range expansion dynamics. We do this both for a temporally stable environment and for a
142 temporally variable environment (white noise). In both cases, we run the simulation twenty
143 times for rates of seed dormancy between 0.0 and 0.95 in increments of 0.05 . In each
144 simulation, we introduce $K = 25$ individuals into a single patch (coordinate of patch: $x = 2$, $y =$
145 25), run the model for 500 years and calculate the mean rate of range expansion. Previous
146 work on the evolution of dispersal during invasions has indicated that Allee effects can play
147 an important role [20], so we repeated the above simulations but with a mild Allee effect
148 operating, whereby individuals that are on their own in a cell do not reproduce. We then run a
149 set of simulations to examine how dormancy evolves during range expansion. Here, we run
150 the simulation for 1000 years in 50 by 50 lattice to obtain evolutionary pseudo-equilibrium in a
151 stationary environment; after this burn-in period we open-up the landscape and populations
152 are able to expand for further 1000 years. All initial individuals are seeded with the same
153 genotype of $\gamma = 0.5$. We track the eco-evolutionary dynamics of range expansion, monitoring
154 the distribution of genotypes across space and through time, the rate of range expansion, and
155 the abundance of adults and seeds across the landscape. We repeat the simulations for

156 temporally stable environment and white noise, with and without a mild Allee effect operating,
157 and for different values of K (5, 25) and σ (0.5, 1.0, 1.5, 2.0).

158 **Results**

159 The rate of seed dormancy plays a major role in determining the rate of range expansion (Fig.
160 1). In a stable environment where seed production is constant through time, we find that higher
161 rates of seed dormancy always result in considerably reduced rates of range expansion (Fig.
162 1A). If an Allee effect is operating the rate of population expansion is further reduced (Fig. 1A,
163 blue dots). However, when seed production varies through time, intermediate rates of
164 dormancy maximise the rate of spatial spread (Fig. 1B). Results from simulations with an Allee
165 effect exhibit the same pattern although the overall rate of range expansion is reduced (Fig.
166 1B, blue dots). In a temporally variable environment, the population is prone to severe crashes
167 (and even extinction) if dormancy is too low, especially if an Allee effect is operating (Fig. 1B).

168 Next, we consider how seed dormancy evolves during the course of range expansion.
169 Snapshots of populations expanding their ranges into a region previously unoccupied by the
170 species are shown in Figure 2. As the expansion proceeds, the mean rate of dormancy at the
171 expansion front decreases, indicating that individuals with reduced dormancy are selected for.
172 These individuals are more likely to be the first to colonise a new patch, where they are able
173 to exploit the low intraspecific competition and thus realise higher lifetime reproductive
174 success than conspecifics that remain dormant in the soil for some years before germinating.
175 Behind the invasion front there is an increase in the mean rate of dormancy as the populations
176 gradually evolve back towards the dormancy strategy that is selected in a spatially saturated
177 environment (Fig. 2-3). Much higher dormancy evolves under white noise compared to what
178 evolves in temporally stable environments, both before and during expansion (Fig. 3), while
179 Allee effects do not substantially alter the evolution of dormancy. Lower local carrying capacity
180 generally leads to evolution of higher dormancy (Fig. 3B) as kin competition is stronger in
181 smaller populations. This effect is particularly evident in temporally stable environments, while
182 with white noise, high environmental variability has a much bigger effect.

183 The amplitude of environmental noise (σ) affects the rate of dormancy that is selected
184 both at the core and front of the range (Fig. 4). At the range core, lower amplitude fluctuations
185 in seed production (with infrequent years of zero production) results in relatively lower
186 dormancy evolving than for higher amplitude fluctuations which lead to higher frequencies of
187 years with zero production. At the range front, dormancy consistently evolves to lower rates
188 that in the core and in general there is lower dormancy at the front with lower amplitude
189 fluctuations. However, the lowest dormancy evolves for $\sigma = 1$, rather $\sigma = 0.5$. This is likely due
190 to the simulations with $\sigma = 0.5$ having reached the end of the landscape before the end of the
191 simulation such that selection was already favouring a return towards the stationary strategy.

192 The evolution of decreased dormancy during range expansion can reduce the
193 resilience of regional populations to adverse environmental conditions. This is neatly
194 illustrated in Figure 5. Here, we show the abundance of adults in two equally sized regions,
195 one that is close to the origin of the invasion and one much further away. Population
196 abundance in the region close to the origin remains relatively stable throughout time, with just
197 an occasional decline following a succession of poor years. The adult abundance of the more
198 distant region reaches that of the first region roughly 80 years after the front first reaches the
199 region. However, when the populations experience a series of poor years there is a major
200 difference in the response of the two populations, with the local population further from the
201 origin decreasing to much lower numbers (Fig. 5), and taking far longer to recover.
202 Interestingly, while this difference in population resilience declines with time, there is still a
203 detectable signal in the trajectories even after hundreds of years after the initial colonisation
204 of the second region.

205 **Discussion**

206 Considerable evidence for the evolutionary influence on the dynamics of range
207 expanding populations has accumulated over the last couple of decades (e.g., [2–4,6,7]).
208 While there has been substantial work on how life history traits including dispersal and mating
209 systems evolve at expanding fronts, dormancy has been largely neglected. Here, we have

210 demonstrated the potential role that dormancy, and its evolution, can play in determining the
211 dynamics of range expansions. First, we have shown that the rate of propagule dormancy
212 controls the rate of range expansion in both temporally stable and unstable environments: in
213 stable environments the most rapid range expansion is obtained in the absence of dormancy
214 while in a temporally variable environment, intermediate rates of dormancy achieve the fastest
215 rate of spread. Second, we have shown that during range expansion, selection will favour
216 reduced rates of dormancy at the front. Third, we demonstrate that the gradient in dormancy
217 that develops from the expanding front back towards to the core results in strong differences
218 in the degree to which regional populations are resilient to a series of poor years.

219 Reduced dormancy evolves at an expanding front for similar reasons to those that lead
220 to increased dispersal at an expanding front. Increased dispersal is selected for as it is those
221 individuals with greater dispersal propensity or dispersal ability phenotypes that are most likely
222 to colonise new patches at the expanding front first and, as long as there is a heritable
223 component to the dispersal traits, their offspring will also be strong dispersers and have a high
224 likelihood of themselves being colonists of new territory [20]. There is effectively a spatial
225 sorting [22] of higher dispersal phenotypes at the front and this process results in rapid
226 acceleration of dispersal during population spread. In our model dispersal is fixed at a constant
227 emigration probability but dormancy is labile and heritable. Now, at the expanding front there
228 is sorting of propagules produced from low dormancy individuals. If, for example, five individual
229 propagules simultaneously arrive at an empty patch first and one breaks dormancy
230 immediately while the others lay dormant, it will have a much higher chance of producing
231 propagules that themselves reach another empty patch ahead of the existing front than those
232 which exhibited dormancy. Effectively selection is acting to promote a life-history strategy that
233 results not in a higher rate of dispersal, or in a greater dispersal distance of individuals but, by
234 acting to reduce dormancy, in an earlier dispersal of individuals.

235 Previous work has indicated that Allee effects can play a major role in determining the
236 probability that a species becomes invasive, setting the speed of an invasion [56,57], and

237 determining the final spatial distribution of an invasive (reviewed in [58]). Allee effects have
238 also been shown to reduce the evolution of increased dispersal during range expansion [20].
239 This reduced selection for increased dispersal rates arises because individuals towards the
240 front with a higher rate of dispersal are more likely to move into a patch where they are on
241 their own and unable to reproduce. The results described in this paper are consistent with the
242 findings of this previous work in demonstrating that Allee effects impact on expansion speed
243 and, additionally, indicate that they may not have the same impact on the evolution of
244 dormancy as they do on dispersal.

245 A particularly interesting result, and one with potentially substantial implications, is that
246 the evolution of a trait in a direction that confers a population with a greater rate of range
247 expansion can at the same time reduce the population's resilience in the face of adverse
248 conditions. Here, reduced dormancy is selected at the expanding front, as individuals with
249 reduced dormancy are most likely to be the first colonists of a new area and be able to achieve
250 high fitness there, free of intraspecific competition. However, this selection for reduced
251 dormancy can lead to populations that are ill-equipped to survive poor years, especially when
252 a few poor years arrive in succession. This has potential consequences in the context of
253 conservation efforts aimed at mitigating the impacts of climate change. For example, if the aim
254 is to reintroduce populations into marginal conditions or even to assist colonisation into newly
255 suitable climate-space, consideration should be given to dormancy characteristics of the
256 introduced populations. For local establishment, introductions with higher dormancy stock
257 would be beneficial but for future spread from the point of introduction, it is likely to be better
258 to have stock with lower dormancy. Thus, an ideal strategy may be introducing a mixture of
259 genotypes conferring differing levels of dormancy. Consequences of the eco-evolutionary
260 dynamics of dormancy for restoration, reintroduction and assisted colonisation are an area
261 deserving of attention and both modelling and field experiments would be useful.

262 The evolution of other life-history characteristics at expanding range margins might
263 also result in reduced population resilience. As one example, at expanding margins self-

264 incompatibility might be selected against [59–61] reducing the Allee effect and increasing the
265 rate of range expansion. However, loss of self-incompatibility would inevitably reduce inter-
266 individual genetic variability and potentially make the population less resilient to either a
267 succession of poor years or to the challenge of a disease. Either through direct ecological
268 mechanisms or through eco-evolutionary consequences, such as a reduction in adaptive
269 potential, life history evolution at expanding fronts may result in the populations of recently
270 colonised regions having reduced resilience against abiotic or biotic challenges. There
271 remains much work to be done before we have a good understanding of the interplay between
272 evolutionary and ecological dynamics at expanding range margins, and an important element
273 of this will be to ask how evolutionary processes will alter the susceptibility of recently
274 expanded regional populations to crashes. In tackling this question, it will be important to
275 recognise that changes in life history traits during a range expansion may have considerable
276 consequences on our ability to predict population dynamics. It highlights that any forecasting
277 of the dynamics of populations in recently colonised regions that is based on life-history
278 parameter estimates obtained from within a long-term stable range are likely to be problematic.

279 There are many avenues for future work investigating the evolution of dormancy during
280 range expansions within ecological systems and beyond. We conclude by identifying five key
281 areas that we believe merit attention.

282 1. Theory examining how dormancy evolves in conjunction with other life history traits during
283 range expansions. There has been work on how evolution should be expected to shape
284 covariation between dormancy, dispersal and mating systems within stationary ranges
285 (e.g., [37,38,40,42,62,63]). It would be interesting to determine how predictions are likely
286 to change in populations that are undergoing, or have recently undergone, a range
287 expansion. Furthermore, there is the possibility that evolution of dormancy alongside other
288 life-history traits might result in much greater acceleration of range expansions that occurs
289 when only one trait evolves. Additionally, it would be valuable to assess how resilient
290 recently range-expanded populations are when multiple traits have jointly evolved.

291 2. Empirical work examining how dormancy traits vary from an expanding front towards an
292 introduction point (for an invasive) or a range core (for a range-shifting native). Ideally
293 common-garden experiments are required to remove maternal (and potential grand-
294 maternal) effects in dormancy rates. Determining the heritability of dormancy for a broad
295 set of species would also be valuable. Related to the first area suggested above, an
296 obvious extension would be to describe patterns of variation in both dormancy and
297 dispersal traits from front to core.

298 3. Microcosm experiments have proved extremely useful in gaining improved understanding
299 of how dispersal evolves during range expansion (e.g., [25,26,28]). Similar experiments
300 could readily be designed to examine dormancy evolution (and joint dormancy-dispersal
301 evolution). *A. thaliana* would provide one ideal system for such an experiment given that
302 it has already been effectively used to explore dispersal evolution [25] and there is
303 excellent understanding of dormancy in the species (e.g. [64–66]).

304 4. Theoretical and empirical work to determine how dormancy evolution during range
305 expansion is likely to impact other adaptive responses to environmental changes. The
306 potential for dormancy to influence the evolution of herbicide resistance [67] and drug
307 resistance / tolerance [68] has been recognised and recent theory demonstrates that
308 dormancy can have major impacts on adaptive processes [47]. Thus, changes in
309 dormancy during a range expansion are likely to result in recently colonised populations
310 having altered abilities to adapt in response to environmental change. Studies
311 investigating this would be worthwhile and microbial microcosms would potentially prove
312 a fruitful model system.

313 5. Incorporating dormancy and its evolution in tools for forecasting species' responses to
314 environmental change. Process-based modelling platforms are being developed that can
315 predict ecological and population genetic responses of how species will respond to
316 environmental change as well as being used to inform management [69,70]. These tools
317 incorporate dispersal to differing levels of complexity, and in some cases allow for
318 dispersal evolution (e.g., [71]). However, they do not yet incorporate dormancy, nor the

319 potential for it to evolve. Incorporating the eco-evolutionary dynamics of dormancy would
320 be a vital addition for effectively forecasting the future dynamics of many species.

321

322 **References**

- 323 1. Miller TEX *et al.* 2020 Eco-evolutionary dynamics of range expansion. *Ecology* **101**,
324 e03139. (doi:10.1002/ecy.3139)
- 325 2. Hänfling B, Kollmann J. 2002 An evolutionary perspective of biological invasions. *Trends*
326 in *Ecology & Evolution* **17**, 545–546. (doi:10.1016/S0169-5347(02)02644-7)
- 327 3. Lambrinos JG. 2004 How Interactions Between Ecology and Evolution Influence
328 Contemporary Invasion Dynamics. *Ecology* **85**, 2061–2070. (doi:10.1890/03-8013)
- 329 4. Sherpa S, Després L. 2021 The evolutionary dynamics of biological invasions: A multi-
330 approach perspective. *Evolutionary Applications* **14**, 1463–1484.
(doi:10.1111/eva.13215)
- 332 5. Henry RC, Bocedi G, Travis JMJ. 2013 Eco-evolutionary dynamics of range shifts:
333 Elastic margins and critical thresholds. *Journal of Theoretical Biology* **321**, 1–7.
(doi:10.1016/j.jtbi.2012.12.004)
- 335 6. Hargreaves AL, Eckert CG. 2014 Evolution of dispersal and mating systems along
336 geographic gradients: Implications for shifting ranges. *Functional Ecology* **28**, 5–21.
(doi:10.1111/1365-2435.12170)
- 338 7. Kubisch A, Fronhofer EA. 2014 Dispersal, evolution and range dynamics – a synthesis.
339 *Oikos* **123**, 3–4. (doi:10.1111/j.1600-0706.2013.01242.x)
- 340 8. Hargreaves AL, Bailey SF, Laird RA. 2015 Fitness declines towards range limits and
341 local adaptation to climate affect dispersal evolution during climate-induced range shifts.
342 *Journal of Evolutionary Biology* **28**, 1489–1501. (doi:10.1111/jeb.12669)
- 343 9. Latron M, Arnaud J-F, Ferla H, Godé C, Duputié A. 2020 Effects of contemporary shifts
344 of range margins on patterns of genetic structure and mating system in two coastal plant
345 species. *Heredity* **124**, 336–350. (doi:10.1038/s41437-019-0269-0)
- 346 10. Ellstrand NC, Schierenbeck KA. 2000 Hybridization as a stimulus for the evolution of
347 invasiveness in plants? *PNAS* **97**, 7043–7050. (doi:10.1073/pnas.97.13.7043)
- 348 11. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. 2005 Phenotypic and
349 genetic differentiation between native and introduced plant populations. *Oecologia* **144**,
350 1–11. (doi:10.1007/s00442-005-0070-z)
- 351 12. N. Reznick D, K. Ghelambor C. 2001 The population ecology of contemporary
352 adaptations: What empirical studies reveal about the conditions that promote adaptive
353 evolution. *Genetica* **112–113**, 183–198. (doi:10.1023/A:1013352109042)
- 354 13. Quinn TP, Kinnison MT, Unwin MJ. 2001 Evolution of chinook salmon (*Oncorhynchus*
355 *tshawytscha*) populations in New Zealand: Pattern, rate, and process. In *Microevolution*
356 *Rate, Pattern, Process* (eds AP Hendry, MT Kinnison), pp. 493–513. Dordrecht: Springer
357 Netherlands. (doi:10.1007/978-94-010-0585-2_30)

358 14. Parker IM, Rodriguez J, Loik ME. 2003 An Evolutionary Approach to Understanding the
359 Biology of Invasions: Local Adaptation and General-Purpose Genotypes in the Weed
360 *Verbascum thapsus*. *Conservation Biology* **17**, 59–72. (doi:10.1046/j.1523-
361 1739.2003.02019.x)

362 15. Butin E, Porter* AH, Elkinton J. 2005 Adaptation during biological invasions and the case
363 of *Adelges tsugae*. *Evol Ecol Res* **7**, 887–900.

364 16. Daehler CC. 1998 Variation in self-fertility and the reproductive advantage of self-fertility
365 for an invading plant (*Spartina alterniflora*). *Evolutionary Ecology* **12**, 553–568.
366 (doi:10.1023/A:1006556709662)

367 17. Garcia-Rossi D, Rank N, Strong DR. 2003 Potential for Self-Defeating Biological
368 Control? Variation in Herbivore Vulnerability Among Invasive *Spartina* Genotypes.
369 *Ecological Applications* **13**, 1640–1649. (doi:10.1890/01-5301)

370 18. Simmons AD, Thomas CD. 2004 Changes in dispersal during species' range
371 expansions. *The American Naturalist* **164**, 378–95. (doi:10.1086/423430)

372 19. Phillips BL, Brown GP, Webb JK, Shine R. 2006 Invasion and the evolution of speed in
373 toads. *Nature* **439**, 803–803. (doi:10.1038/439803a)

374 20. Travis JMJ, Dytham C. 2002 Dispersal evolution during invasions. *Evolutionary Ecology
375 Research* **4**, 1119–1129.

376 21. Travis JMJ, Mustin K, Benton TG, Dytham C. 2009 Accelerating invasion rates result
377 from the evolution of density-dependent dispersal. *Journal of Theoretical Biology* **259**,
378 151–8. (doi:10.1016/j.jtbi.2009.03.008)

379 22. Shine R, Brown G, Phillips B. 2011 An evolutionary process that assembles phenotypes
380 through space rather than through time. *Proceedings of the National Academy of
381 Sciences* **108**, 8–11. (doi:10.1073/pnas.1018989108)

382 23. Phillips BL, Perkins TA. 2019 Spatial sorting as the spatial analogue of natural selection.
383 *Theor Ecol* **12**, 155–163. (doi:10.1007/s12080-019-0412-9)

384 24. Holt RD. 2003 On the evolutionary ecology of species' ranges. *Evolutionary Ecology
385 Research* **5**, 159–178.

386 25. Williams JL, Kendall BE, Levine JM. 2016 Rapid evolution accelerates plant population
387 spread in fragmented experimental landscapes. *Science* **353**, 482–485.

388 26. Fronhofer EA, Gut S, Altermatt F. 2017 Evolution of density-dependent movement
389 during experimental range expansions. *Journal of Evolutionary Biology* **30**, 2165–2176.
390 (doi:10.1111/jeb.13182)

391 27. Weiss-Lehman C, Hufbauer RA, Melbourne BA. 2017 Rapid trait evolution drives
392 increased speed and variance in experimental range expansions. *Nature
393 Communications* **8**, 14303–14303. (doi:10.1038/ncomms14303)

394 28. Ochocki BM, Miller TEX. 2017 Rapid evolution of dispersal ability makes biological
395 invasions faster and more variable. *Nature Communications* **8**, 14315–14315.
396 (doi:10.1038/ncomms14315)

397 29. Phillips BL, Brown GP, Travis JMJ, Shine R. 2008 Reid's paradox revisited: the evolution
398 of dispersal kernels during range expansion. *The American Naturalist* **172 Suppl**, S34-
399 48. (doi:10.1086/588255)

400 30. Urban MC, Phillips BL, Skelly DK, Shine R. 2008 A toad more traveled: the
401 heterogeneous invasion dynamics of cane toads in Australia. *The American Naturalist*
402 **171**, E134-48. (doi:10.1086/527494)

403 31. Linkies A, Graeber K, Knight C, Leubner-Metzger G. 2010 The evolution of seeds. *New*
404 *Phytologist* **186**, 817–831. (doi:10.1111/j.1469-8137.2010.03249.x)

405 32. Buoro M, Carlson SM. 2014 Life-history syndromes: Integrating dispersal through space
406 and time. *Ecology Letters* **17**, 756–767. (doi:10.1111/ele.12275)

407 33. Ellner S. 1986 Germination dimorphisms and parent-offspring conflict in seed
408 germination. *Journal of Theoretical Biology* **123**, 173–185. (doi:10.1016/S0022-
409 5193(86)80151-5)

410 34. Nilsson P, Fagerström T, Tuomi J, Aström M. 1994 Does seed dormancy benefit the
411 mother plant by reducing sib competition? *Evol Ecol* **8**, 422–430.
(doi:10.1007/BF01238192)

413 35. Lundberg S, Nilsson P, Fagerström T. 1996 Seed Dormancy and Frequency Dependent
414 Selection Due to Sib Competition: the Effect of Age Specific Gene Expression. *Journal*
415 *of Theoretical Biology* **183**, 9–17. (doi:10.1006/jtbi.1996.0196)

416 36. Kobayashi Y, Yamamura N. 2000 Evolution of seed dormancy due to sib competition:
417 effect of dispersal and inbreeding. *Journal of theoretical biology* **202**, 11–24.
418 (doi:10.1006/jtbi.1999.1027)

419 37. Vitalis R, Rousset F, Kobayashi Y, Olivieri I, Gandon S. 2013 The joint evolution of
420 dispersal and dormancy in a metapopulation with local extinctions and kin competition.
421 *Evolution* **67**, 1676–91. (doi:10.1111/evo.12069)

422 38. Olivieri I. 2001 The evolution of seed heteromorphism in a metapopulation: interactions
423 between dispersal and dormancy. In *Integrating ecology and evolution in a spatial*
424 *context* (eds J Silverton, J Antonovics), pp. 245–268. Cambridge, UK: Cambridge
425 University Press.

426 39. Mathias A, Kisdi É. 2002 Adaptive diversification of germination strategies. *Proceedings*
427 *of the Royal Society of London. Series B: Biological Sciences* **269**, 151–155.
428 (doi:10.1098/rspb.2001.1867)

429 40. Gerber N, Kokko H. 2018 Abandoning the ship using sex, dispersal or dormancy:
430 multiple escape routes from challenging conditions. *Philosophical Transactions of the*
431 *Royal Society B: Biological Sciences* **373**, 20170424. (doi:10.1098/rstb.2017.0424)

432 41. Cohen D. 1966 Optimizing reproduction in a randomly varying environment. *Journal of*
433 *Theoretical Biology* **12**, 119–129. (doi:10.1016/0022-5193(66)90188-3)

434 42. Venable DL, Brown JS. 1988 The Selective Interactions of Dispersal, Dormancy, and
435 Seed Size as Adaptations for Reducing Risk in Variable Environments. *The American*
436 *Naturalist* **131**, 360–384. (doi:10.1086/284795)

437 43. Rees M. 1994 Delayed Germination of Seeds: A Look at the Effects of Adult Longevity,
438 the Timing of Reproduction, and Population Age/Stage Structure. *The American*
439 *Naturalist* **144**, 43–64. (doi:10.1086/285660)

440 44. Cáceres CE. 1997 Temporal variation, dormancy, and coexistence: A field test of the
441 storage effect. *PNAS* **94**, 9171–9175. (doi:10.1073/pnas.94.17.9171)

442 45. Facelli JM, Chesson P, Barnes N. 2005 Differences in Seed Biology of Annual Plants in
443 Arid Lands: A Key Ingredient of the Storage Effect. *Ecology* **86**, 2998–3006.
444 (doi:10.1890/05-0304)

445 46. Wisnioski NI, Leibold MA, Lennon JT. 2019 Dormancy in Metacommunities. *The*
446 *American Naturalist* **194**, 135–151. (doi:10.1086/704168)

447 47. Shoemaker WR, Lennon JT. 2018 Evolution with a seed bank: The population genetic
448 consequences of microbial dormancy. *Evolutionary Applications* **11**, 60–75.
449 (doi:10.1111/eva.12557)

450 48. Lennon JT, Jones SE. 2011 Microbial seed banks: the ecological and evolutionary
451 implications of dormancy. *Nat Rev Microbiol* **9**, 119–130. (doi:10.1038/nrmicro2504)

452 49. Lloyd KG. 2021 Time as a microbial resource. *Environmental Microbiology Reports* **13**,
453 18–21. (doi:10.1111/1758-2229.12892)

454 50. Miller AK, Brown JS, Enderling H, Basanta D, Whelan CJ. 2021 The Evolutionary
455 Ecology of Dormancy in Nature and in Cancer. *Front. Ecol. Evol.* **0**.
456 (doi:10.3389/fevo.2021.676802)

457 51. Murrell D, Travis J, Dytham C. 2002 The evolution of dispersal distance in spatially-
458 structured populations. *Oikos* **97**, 229–236.

459 52. Travis ER, Travis JMJ. 2004 Mutators in Space: The Dynamics of High-Mutability Clones
460 in a Two-Patch Model. *Genetics* **167**, 513–522. (doi:10.1534/genetics.167.1.513)

461 53. Alleaume-Beharira M, Pen IR, Ronce O. 2006 Geographical patterns of adaptation
462 within a species' range: interactions between drift and gene flow. *Journal of Evolutionary*
463 *Biology* **19**, 203–215. (doi:10.1111/j.1420-9101.2005.00976.x)

464 54. Klopfstein S, Currat M, Excoffier L. 2006 The fate of mutations surfing on the wave of a
465 range expansion. *Molecular Biology and Evolution* **23**, 482–90.
466 (doi:10.1093/molbev/msj057)

467 55. Ruokolainen L, Lindén A, Kaitala V, Fowler MS. 2009 Ecological and evolutionary
468 dynamics under coloured environmental variation. *Trends in Ecology & Evolution* **24**,
469 555–63. (doi:10.1016/j.tree.2009.04.009)

470 56. Cruickshank I, Gurney WSC, Veitch AR. 1999 The Characteristics of Epidemics and
471 Invasions with Thresholds. *Theoretical Population Biology* **56**, 279–292.
472 (doi:10.1006/tpbi.1999.1432)

473 57. Keitt TH, Lewis MA, Holt RD. 2001 Allee effects, invasion pinning, and species' borders.
474 *The American Naturalist* **157**, 203–16. (doi:10.1086/318633)

475 58. Taylor CM, Hastings A. 2005 Allee effects in biological invasions. *Ecology Letters* **8**,
476 895–908. (doi:10.1111/j.1461-0248.2005.00787.x)

477 59. Baker H. 1955 Self-compatibility and establishment after 'long-distance' dispersal.
478 *Evolution* **9**, 347–349.

479 60. Baker H. 1967 Support for Baker's Law-As a Rule. *Evolution* **21**, 853–856.

480 61. Pannell JR, Barrett SCH. 1998 Baker's law revisited: reproductive assurance in a
481 metapopulation. *Evolution* **52**, 657–668. (doi:10.2307/2411261)

482 62. Siewert W, Tielbörger K. 2010 Dispersal-Dormancy Relationships in Annual Plants:
483 Putting Model Predictions to the Test. *The American Naturalist* **176**, 490–500.
484 (doi:10.1086/656271)

485 63. Rubio de Casas R, Donohue K, Venable DL, Cheptou P-O. 2015 Gene-flow through
486 space and time: dispersal, dormancy and adaptation to changing environments. *Evol
487 Ecol* **29**, 813–831. (doi:10.1007/s10682-015-9791-6)

488 64. Postma FM, Ågren J. 2015 Maternal environment affects the genetic basis of seed
489 dormancy in *Arabidopsis thaliana*. *Molecular Ecology* **24**, 785–797.
490 (doi:10.1111/mec.13061)

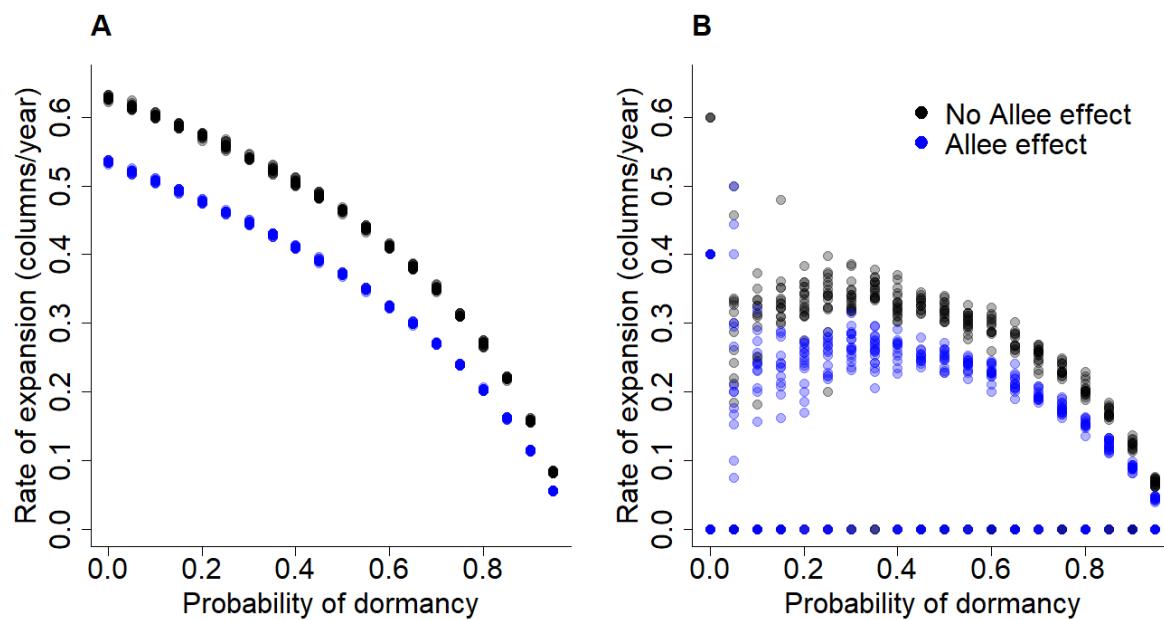
491 65. Kerdaffrec E, Nordborg M. 2017 The maternal environment interacts with genetic
492 variation in regulating seed dormancy in Swedish *Arabidopsis thaliana*. *PLOS ONE* **12**,
493 e0190242. (doi:10.1371/journal.pone.0190242)

494 66. Cao H, Han Y, Li J, Ding M, Li Y, Li X, Chen F, Soppe WJ, Liu Y. 2020 *Arabidopsis
495 thaliana* SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating
496 the gibberellin pathway. *Journal of Experimental Botany* **71**, 919–933.
497 (doi:10.1093/jxb/erz471)

498 67. Darmency H, Colbach N, Corre VL. 2017 Relationship between weed dormancy and
499 herbicide rotations: implications in resistance evolution. *Pest Management Science* **73**,
500 1994–1999. (doi:10.1002/ps.4611)

501 68. Lewis K. 2007 Persister cells, dormancy and infectious disease. *Nat Rev Microbiol* **5**,
502 48–56. (doi:10.1038/nrmicro1557)

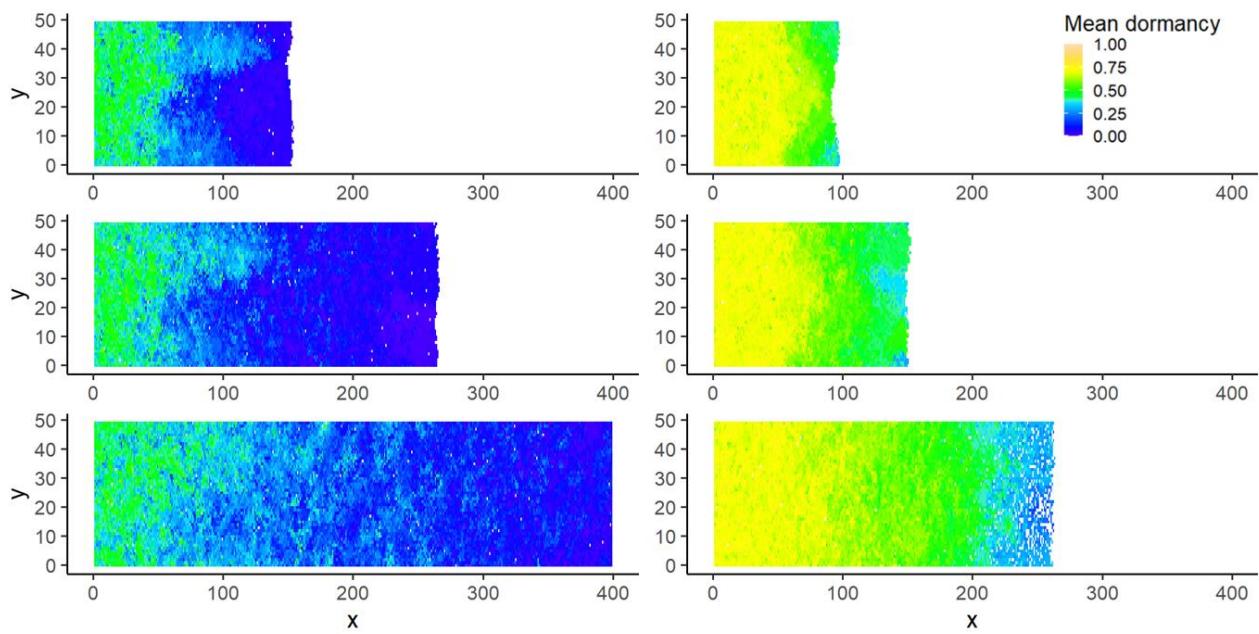
503 69. Urban MC *et al.* 2016 Improving the forecast for biodiversity under climate change.
504 *Science* **353**, aad8466–aad8466. (doi:10.1126/science.aad8466)


505 70. Briscoe NJ *et al.* 2019 Forecasting species range dynamics with process-explicit
506 models: matching methods to applications. *Ecology Letters* **22**, 1940–1956.
507 (doi:10.1111/ele.13348)

508 71. Bocedi G, Palmer SCF, Malchow A-K, Zurell D, Watts K, Travis JM. 2020 RangeShifter
509 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary
510 dynamics and species' responses to environmental changes. *bioRxiv* ,
511 2020.11.26.400119. (doi:10.1101/2020.11.26.400119)

512

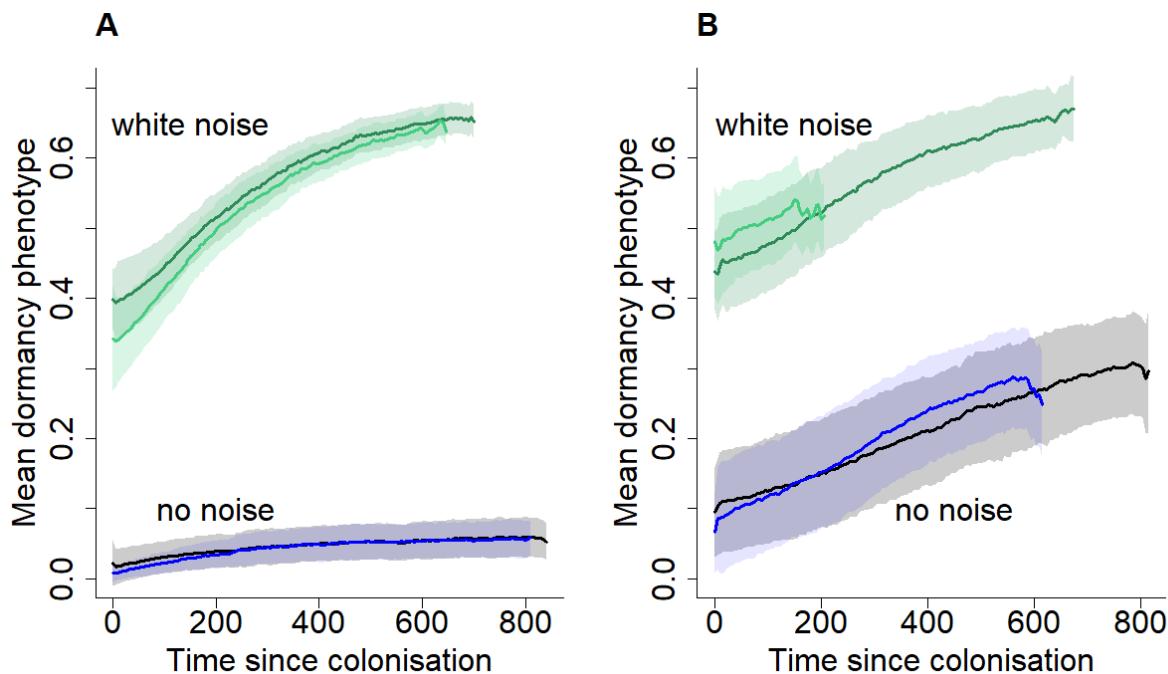
513


514

515

516 **Figure 1.** Seed dormancy controls the rate of range expansion. In a temporally stable
517 environment **(A)** range expansion is always less rapid when the probability of seed dormancy
518 is higher and is considerably slower when an Allee effect operates. However, in a temporally
519 variable environment **(B)**, intermediate levels of dormancy generally result in the most rapid
520 range expansion. Black points show the outcomes of 20 replicate simulations for each
521 probability of dormancy without an Allee effect. Blue points show the same with an Allee effect
522 operating. Other parameters: $d = 0.1$, $m = 0.05$, $K = 25$. In (A) $s = 5$ while in (B) s is subject to
523 white noise ($\kappa = 0.0$, $\sigma = 1.0$).

524



525

526 **Figure 2:** Snapshots of the model illustrating the mean probability of dormancy evolving during
527 range expansion. The left column represents one replicate simulation under temporally stable
528 environment, and the right column one replicate simulation under white noise, at time = 1200
529 (top panels), 1400 (middle) and 1775 (bottom). Both simulations are without Allee effect. Other
530 parameters: $d = 0.1$, $m = 0.05$, $K = 5$ and $\beta = 0.01$.

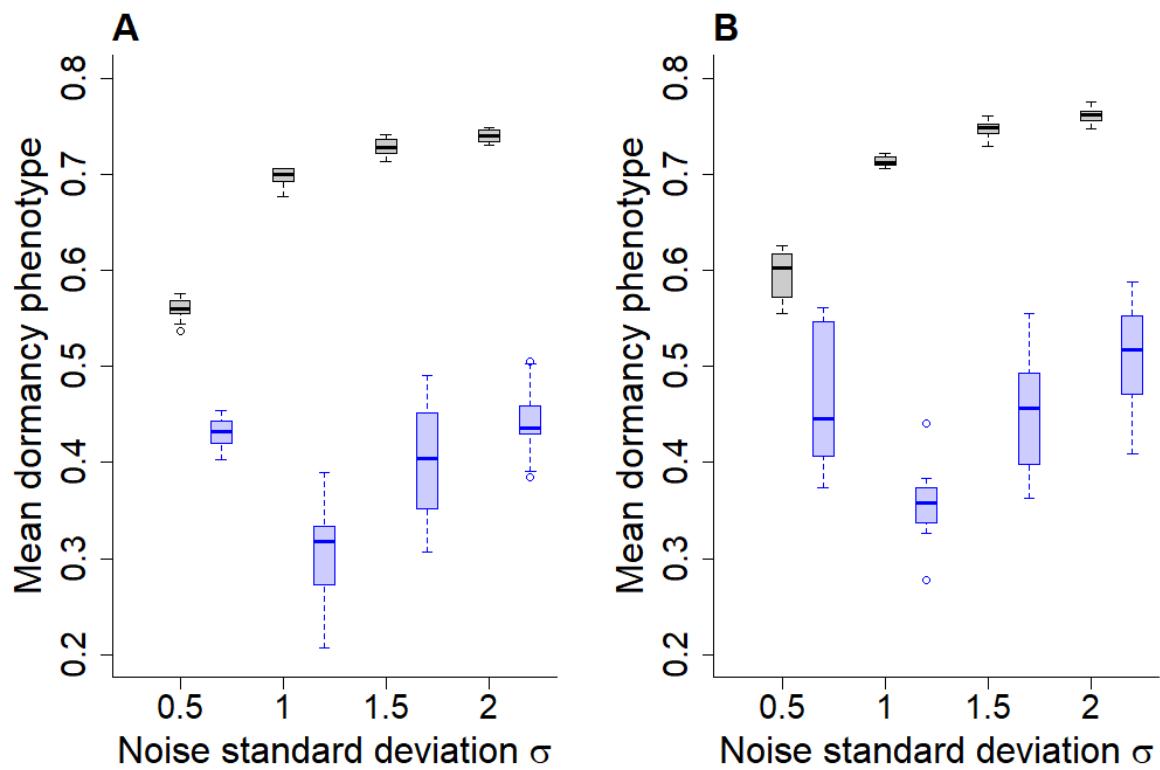
531

532

533

534 **Figure 3:** Changes in dormancy through time within a specific region, shown either under
535 temporally stable environment or white noise ($\kappa = 0.0$, $\sigma = 1.0$), at two different carrying
536 capacities: **(A)** $K = 25$; **(B)** $K = 5$. Here, we plot the mean dormancy of adults located in the
537 landscape column $x = 150$. When the expansion front first reaches the region (time = 0)
538 dormancy is low, but as the local population becomes established selection favours higher
539 rates of dormancy. Dark colours (black and dark green) show simulations without an Allee
540 effect, while lighter colours (blue and light green) show simulations with an Allee effect. Lines
541 represent the mean dormancy phenotype averaged over 20 replicate simulations; shades
542 represent \pm the standard deviation. Other parameters: $d = 0.1$, $m = 0.05$, $\beta = 0.01$.

543


544

545

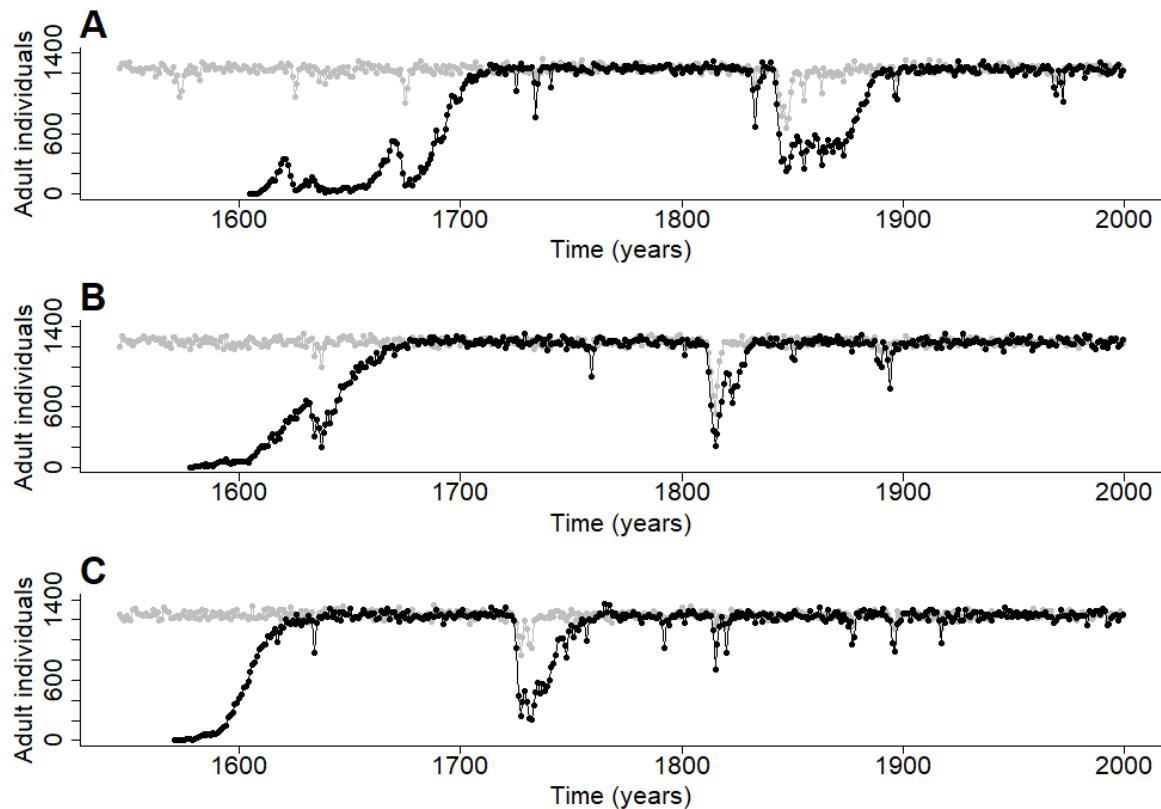
546

547

548

549

550 **Figure 4:** Evolution of dormancy at the core and front of the range under different amplitudes
551 of temporal stochasticity in seed production (σ). **(A)** $K = 25$; **(B)** $K = 5$. Black boxes represent
552 the mean dormancy phenotype evolved at the range core ($x = 26$ to 30), while blue boxes
553 represent the mean strategy evolved in the 5 frontmost rows by year 1995. Simulations are
554 run with no Allee effects. Other parameters: $d = 0.1$, $m = 0.05$, $\beta = 0.01$.


555

556

557

558

559

560

561 **Figure 5:** Resilience to adverse environmental conditions is decreased by the evolution of
562 reduced dormancy during expansion. These traces (from three illustrative replicate
563 simulations) compare the abundance of adult plants in two regions, one close to the point of
564 introduction ($x = 26$ to 30 ; grey), the other much further away ($x = 121$ to 125 ; black), which is
565 reached well through the expansion. These simulations are all run under white noise ($\kappa = 0.0$,
566 $\sigma = 1.0$) and with an Allee effect. Other parameters: $d = 0.1$, $m = 0.05$, $K = 5$ and $\beta = 0.01$