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Abstract.  —Understanding the origins of diversity and the factors that drive some clades to be more diverse than others 
are important issues in evolutionary biology. Sophisticated SSE (state-dependent speciation and extinction) models 
provide insights into the association between diversification rates and the evolution of a trait. The empirical data used 
in SSE models and other methods is normally imperfect, yet little is known about how this can affect these models. 
Here, we evaluate the impact of common phylogenetic issues on inferences drawn from SSE models. Using simulated 
phylogenetic trees and trait information, we fitted SSE models to determine the effects of sampling fraction (phylogenetic 
tree completeness) and sampling fraction mis-specification on model selection and parameter estimation (speciation, 
extinction, and transition rates) under two sampling regimes (random and taxonomically biased). As expected, we 
found that both model selection and parameter estimate accuracies are reduced at lower sampling fractions (i.e., low 
tree completeness). Furthermore, when sampling of the tree is imbalanced across sub-clades and tree completeness is ≤ 
60%, rates of false positives increase and parameter estimates are less accurate, compared to when sampling is random. 
Thus, when applying SSE methods to empirical datasets, there are increased risks of false inferences of trait dependent 
diversification when some sub-clades are heavily under-sampled. Mis-specifying the sampling fraction severely affected 
the accuracy of parameter estimates: parameter values were over-estimated when the sampling fraction was specified as 
lower than its true value, and under-estimated when the sampling fraction was specified as higher than its true value. 
Our results suggest that it is better to cautiously under-estimate sampling efforts, as false positives increased when 
the sampling fraction was over-estimated. We encourage SSE studies where the sampling fraction can be reasonably 
estimated and provide recommended best practices for SSE modeling. [Trait dependent diversification; SSE models; 
phylogenetic tree completeness; sampling fraction.]

Understanding the origins of diversity and why some 
clades are more diverse than others are fundamen-
tal questions in evolutionary biology. Estimating the 
diversification rate of lineages, and how they vary 
across phylogenetic trees, is essential to developing this 
understanding. The per-lineage rates of speciation and 
extinction in a clade can be affected by environmen-
tal and geographical factors (Ricklefs 2007), time (or 
clade age; Henao Diaz et al. 2019), and species’ traits 
(Jablonski 2008; Rabosky and McCune 2010). Possessing 
a certain trait state can promote speciation by increas-
ing fitness or reproductive output (Liem 1973; Weber 
and Agrawal 2014; Helmstetter et al. 2016; Laenen et 
al. 2016; Igea et al. 2017). Conversely, some trait states 
may hinder speciation or increase extinction rates; for 
example, specialization has been shown to reduce spe-
ciation rates in some clades (Day et al. 2016), but pro-
motes it in others (Resl et al. 2018; Tonini et al. 2020). 

Although differences in diversification rates across trait 
states occur frequently (Jablonski 2008), it does not nec-
essarily mean that the trait itself drives alone the clades’ 
diversification dynamics.

The state-dependent speciation and extinction (SSE) 
framework was developed to determine the impact 
that the evolution of a trait has on subsequent patterns 
of lineage diversification through time, by linking the 
presence/absence (or value) of trait states to diversi-
fication rates. To implement this approach and deter-
mine the most likely mode of diversification, Examined 
Trait Dependent (ETD) models, which include the trait 
hypothesized to affect diversification, are compared to 
models with Constant Diversification Rates (CR mod-
els) and Concealed Trait Dependent (CTD) models 
[also known as Character-Independent (CID) models] 
(Beaulieu and O’Meara 2016). CTD models account for 
the possibility that diversification rates do not vary in 
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relation to the focal trait, but rather with some unmea-
sured trait(s). The CTD model is always as complex 
(in terms of the number of character states) as the ETD 
model (in CID notation, the number of character states 
has to be specified for example, CID-2 has two charac-
ter states). The use of CTD models successfully reduces 
false inferences of trait dependent diversification that 
were problematic in earlier SSE tools (Rabosky and 
Goldberg 2015; Beaulieu and O’Meara 2016) such as 
BiSSE (Maddison et al. 2007a) and QuaSSE (Fitzjohn 
2010). The improved suit of SSE models includes 
HiSSE (hidden-state-dependent speciation and extinc-
tion) (Beaulieu and O’Meara 2016), GeoHiSSE (a bio-
geographical version) (Caetano et al. 2018), MuHiSSE 
(a multi-trait state version) (Nakov et al. 2019; Zenil-
Ferguson et al. 2019), MiSSE (Vasconcelos et al. 2022), 
and SecSSE (several examined and concealed state 
dependant speciation and extinction) (Herrera-Alsina 
et al. 2019).

The accuracy of model selection (i.e., comparing 
ETD, CTD and CR models) and parameter estimation 
(speciation, extinction, and transition rate estimates) in 
state-dependent diversification analyses is dependent 
on several factors, including: the similarity of true spe-
ciation rates across trait states, the number of transitions 
among trait states, completeness of trait information, 
and accuracy and completeness of the phylogenetic 
tree. It is harder to find evidence for trait dependent 
diversification when speciation rates are similar to each 
other (Beaulieu and O’Meara 2016) and when extinction 
rates are high (Herrera-Alsina et al. 2019). Incomplete 
trait information adds uncertainty to models: a missing 
tip in the phylogenetic tree or lack of trait information 
for an extant species will render the contribution of that 
branch to the analysis null. Some tools, such as SecSSE, 
can account for partial trait state data which reduces the 
negative effect of missing trait information (Herrera-
Alsina et al. 2019). Missing tips can result in loss of trait 
state transitions; this is a crucial piece of information for 
SSE modeling and lost transitions will likely negatively 
impact the analysis. Moreover, phylogenetic trees are 
sources of uncertainty themselves, with potential inac-
curacies both in the topology of the tree and the branch 
lengths (Felsenstein 1985; Donoghue and Ackerly 1996).

Diversification analyses are normally intended for 
complete clades, but phylogenetic trees may be incom-
pletely sampled, or only a (potentially polyphyletic) 
subset of taxa may be chosen for analysis. For example, 
the number of species/phylotypes in the entire clade 
may be unknown (e.g., in microbes) or the taxonomic 
scope of a study could be geographically limited. In 
SSE models, the sampling fraction is the percentage 
of taxa in the clade included in the phylogenetic tree 
(Nee et al. 1994; Fitzjohn et al. 2009; Chang et al. 2020), 
is specified separately in each trait state. The sampling 
fraction setting typically assumes that taxa are missing 
from the clade at random; however, this is rarely true 
and does not reflect realistic sampling associated with 
empirical phylogenies. Older, more abundant lineages 
are less likely to be excluded than younger lineages in 

incompletely sampled trees (Davies et al. 2011). In some 
studies, certain sub-clades, for example those from the 
tropics in contrast to temperate counterparts, may be 
highly under-sampled or completely excluded, poten-
tially affecting the accuracy of SSE analysis (Titley et 
al. 2017). In studies that focus on a specific geographic 
region, species from outside that region would be 
removed. Plant collection biases have been well doc-
umented (Rich and Woodruff 1992; Moerman and 
Estabrook 2006; Corlett 2016; Daru et al. 2018) and some 
families (e.g., Asteraceae, Cyperaceae, and Poaceae) 
have phylogenetic biases in collection frequency (Daru 
et al. 2018), so sampling is neither uniform nor random 
across these phylogenies. Animals that are particularly 
prone to taxonomic bias include invertebrates such 
as Insecta, Arachnida, and Gastropoda (Troudet et al. 
2017). Larger animals are not exempt from biases; for 
example, there is a lack of genetic data for bird species 
from tropical regions (Reddy 2014). Indeed, there is a 
general pattern of under-sampling of tropical species 
compared to those in temperate areas (Chek et al. 2003; 
Collen et al. 2008; Titley et al. 2017). Microbial phylo-
genetic reconstructions are likely to almost always be 
under-sampled and there may often be biases related 
to geography or environmental conditions, for example 
with higher sampling occurring under certain pH con-
ditions (Gubry-Rangin et al. 2015).

In cases where the total number of species in a clade is 
unknown, the sampling fraction could be mis-specified, 
and this too may affect diversification analyses. Issues 
with clade specific sampling factions have previously 
been documented (Beaulieu 2020) but little work has 
been done on the effects of sampling extent, tree imbal-
ance, and mis-specification on SSE model accuracy 
(Nee et al. 1994; Fitzjohn et al. 2009; Chang et al. 2020). 
However, understanding the consequences of different 
sampling regimes on model comparison and parameter 
estimation is paramount to give confidence to SSE stud-
ies with incomplete phylogenetic trees. Conducting 
SSE analyses in a Bayesian framework may be a use-
ful method to reduce uncertainty around parameter 
estimation and improve the ability to detect signals 
of trait-dependence diversification. For instance, with 
Bayesian analysis is possible to account for sampling 
fraction uncertainty, by providing a range of possible 
sampling fractions as a prior, although this is not some-
thing that has been implemented in studies yet.

Here, we provide the first in-depth evaluation of how 
incomplete phylogenetic information affects the perfor-
mance of SSE models that incorporate concealed/hid-
den traits. We simulated data sets (phylogenetic trees 
along with trait information) and fitted SSE models in 
order to evaluate model selection under a number of 
different scenarios. Specifically, we evaluate the ability 
to select the correct type of relationship between trait 
evolution and branching patterns, and the accuracy 
in estimating parameter values (speciation, extinction, 
and transition rates). We focus on four key variables: 1) 
sampling fraction; 2) phylogenetic tree size; 3) sampling 
regime, in which phylogenies were sampled randomly 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syad001/6988090 by U

niversity of Aberdeen user on 22 April 2023



SYSTEMATIC BIOLOGY2023 3

or with taxonomic bias; and 4) mis-specification of sam-
pling fraction (where the true clade size is either under- 
or over-specified). We also used Bayesian analysis with 
a prior on the sampling fraction to deal with unknown 
sampling fractions.

Materials And Methods

Trait and Phylogeny Simulation

We simulated phylogenetic trees and accompanying 
trait data under three types of trait dependent diver-
sification—ETD, CTD, and Constant Rate (CR). We 
applied the same simulation procedure described in 
Herrera-Alsina et al. (2019). In a nutshell, the simula-
tions are run in continuous time, where first the wait-
ing times are taken from an exponential distribution 
whose parameter is the sum of the per-lineage rates of 
events (i.e., speciation, extinction, and trait evolution). 
Then, a species is randomly taken to undergo one of 
the events and a record of it is kept. Specifically, we 
simulated the evolution of two traits that were inde-
pendent from one another. Each trait had three states 
(examined trait with states 1, 2 and 3; concealed trait 
with states A, B, and C, see below) and all transitions 
across the three states were possible at a single rate (q). 
This means that the shift from state 1 to state 2 had the 
same rate than shifting from state 2 to state 1. Notice 
that both traits are combined to yield a nine-state sys-
tem (1A, 2A, 3A, 1B, 2B, 3B, 1C, 2C, 3C) where double 
transitions (e.g., the change from 1A to 2C) are not pos-
sible. Although more complex systems (traits states ≥ 4) 
are possible in SecSSE (Herrera-Alsina et al. 2019), we 
chose three to minimize complexity. One of the traits, 
the examined trait, influenced diversification such that 
every time a lineage switched to a different trait state, 
its speciation/extinction rate was adjusted accordingly. 
This trait was the only factor affecting speciation and 
extinction dynamics and its’ three states were numer-
ically coded (i.e., 1, 2, 3). In contrast, the other trait, 
the concealed trait, did not influence diversification, 
but rather evolved neutrally over time. This trait’s 
states were denoted alphabetically (A, B, C). Because 
the concealed trait had the same number of states as 
the examined trait (Fig. 1), the CTD model used here 
is equivalent to the character-independent (CID-3) 
model in HiSSE (Beaulieu and O’Meara 2016; Herrera-
Alsina et al. 2019). We kept track of the evolution of 
both traits and at the end of the simulation we retained 
the species’ trait states of either the examined trait 
(ETD-generating model) or the concealed trait (CTD-
generating model). Note that the CTD model accounts 
for trait dependent diversification of an unmeasured 
trait (the concealed trait), and it is equal in complex-
ity to the observed trait model. We also ran a simu-
lation where both traits were neutral, and the rate of 
diversification did not change across time or lineages 
(CR-generating model). In the ETD-generating model, 

speciation rates differed only across examined trait 
states λ1A = λ1B = λ1C ≠ λ2A = λ2B = λ2C ≠ λ3A = λ3B 
= λ3C, while in the CTD-generating model, speciation 
rates differed only across concealed trait states λ1A = 
λ2A = λ3A ≠ λ1B = λ2B = λ3B ≠ λ1C = λ2C = λ3C (Fig. 1). 
In the CR-generating model, all speciation rates were 
the same regardless of trait state λ1A = λ1B = λ1C = λ2A 
= λ2B = λ2C = λ3A = λ3B = λ3C. The resulting simulated 
datasets included phylogenetic trees as well as the trait 
states associated with them.

We set the speciation and extinction rates within 
the ranges previously used to test the performance of 
SecSSE analyses (Herrera-Alsina et al. 2019). For ETD 
and CTD generated phylogenies, the speciation rates (λ) 
were: 0.1, 0.3, 0.5; for CR generated phylogenies, all trait 
states had the same speciation rate of 0.3. The extinction 
rate (μ) was set either low (0.001) or regular (0.05). We 
did not include models with variable extinction rates 
(and/or different transition rates) which adds to the 
model complexity and may lead to confounding effects 
(Davis et al. 2013). The transition rate (q) was set to 0.4 
for all transitions in all phylogenies, and all transitions 
between the three states were possible (Fig. 1). The tran-
sition rate is somewhat high, although not unrealistic: 
while some empirical SSE studies have found transi-
tion rates similar to the rate we chose (e.g., pollination 

Figure 1.  Schematic model diagram. Each circle indicates a trait 
state combination with one examined trait state (1, 2, or 3) and one 
concealed trait state (A, B, or C). The speciation rate (λ) for each 
trait state combination differed either with the examined trait (ETD 
model), or the concealed trait (CTD model). The extinction rate (μ) 
was the same in every trait state combination. The transition rates (q), 
shown in grey for the examined trait and red for the concealed trait, 
was symmetrical, that is, the same rate was used for every transition, 
and all transitions between trait states were possible.
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in hummingbirds, Wessinger et al. 2019), other stud-
ies have found lower rates [e.g., habitat preference in 
Diatoms Nakov et al. (2019); host-plant association in 
dragonflies (Letsch et al. 2016); body shape and habi-
tat preference in marine fishes (Rincon-Sandoval et al. 
2020)], or much higher rates [mycorrhizal association 
in fungi (Looney et al. 2016)]. This also enabled testing 
the performance of SecSSE under new conditions, as its 
performance has already been documented with tran-
sition rates of 0.05 and 0.1 (Herrera-Alsina et al. 2019). 
Phylogenetic trees were simulated in three size groups; 
as younger trees have fewer tips, this was achieved by 
altering the crown age of trees: large (1000–5000 tips; 
age = 23 MY), medium (450–650 tips; age = 19 MY) and 
small (100–250 tips; age = 13.4 MY). The range in num-
ber of species within each category of tree size is due 
to stochasticity and extinction rate (even with the same 
clade age). For each tree size, we simulated 100 phylog-
enies of each diversification mode (ETD, CTD, CR) with 
low extinction, giving a total of 300 trees per size group. 
For small and medium tree sizes, we also simulated 100 
phylogenies of each diversification mode with regular 
extinction.

Phylogenetic Tree Trimming

Phylogenetic trees and accompanying trait data were 
trimmed (removal of extant tips), either randomly or 
with a taxonomic bias (Supplementary Fig. S1), to gen-
erate five sampling fraction (SF) levels in 20% intervals, 
that is SF: 100% (the full tree), 80%, 60%, 40%, and 20%. 
For random trimming, tips were randomly removed 
from across the phylogenetic tree [which is how SSE 
models treat the SF of a phylogeny, with the SF specified 
for each trait state (Nee et al. 1994; Fitzjohn et al. 2009; 
Chang et al. 2020)]. To generate taxonomically biased 
sampling, we selected one or two sub-clades (contain-
ing 20–30% of the clade’s size) to be heavily trimmed 
(removal of 80–90 % of tips) (Supplementary Fig. S1). 
This resulted in slight variation in the final SF (± 2%) in 
each SF level, but this was less than the variation in trait 
state percentages (see below).

Randomly trimmed sets were created for all three 
phylogenetic tree sizes while taxonomic bias trim-
ming was performed only on medium sized phyloge-
netic trees. Note that we did not explicitly evaluate the 
effect of a trait bias: tip loss was done agnostically with 
respect to underlying trait state distributions. High tip 
ratio bias (e.g., one trait state accounting for < 10% of 
tips) can reduce model power and accuracy of param-
eter estimates (Davis et al. 2013). We therefore checked 
for tip ratio bias and found that all trait states were 
trimmed to a similar percentage—each of the three trait 
states accounted for ~33% of tips (Supplementary Fig. 
S2) and there were no differences in trait state percent-
ages across tree sizes or trimming methods. Although 
our transition rate (q = 0.4) guarantees that transitions 
events are distributed throughout time and lineages, 
unsampling some tree tips might lead or not to the loss 
of trait state transitions events. The type of trait state 

transitions lost during trimming may affect model 
power. Therefore, during simulation of the regular 
extinction rate phylogenetic trees, the trait state transi-
tions were recorded; for those datasets where the infer-
ence fails to select the right model, we explored whether 
they feature asymmetric transition lost (e.g., more 1 -> 2 
lost than 2 -> 1) or dissimilar prevalence of concealed/
examined transitions (e.g., more A -> B lost than 1 -> 2).

Sampling Fraction Settings in Maximum Likelihood (ML) 
Framework

Using the above sets of simulated trees and trait 
states at the tips, SSE model analyses were performed 
under two different scenarios: 1) with the SF correctly 
specified, and 2) with the SF incorrectly specified (see 
Table 1 for details). The SF was specified per trait state: 
for example, for SF 60%, the SF was specified as 0.6 for 
each of the three trait states (notice that in hisse there 
is only global SF that accounts for phylogenetic incom-
pleteness). Additionally, we provided a narrow and a 
wide prior for SF in a Bayesian context (see below).

Evaluation of SSE Models in ML

To test the ability of SSE models to select the correct 
(generating) model of trait dependent diversification 
under the above scenarios, we ran SecSSE analyses 
under the three models (ETD, CTD and CR) and com-
pared Akaike information criterion values (AICc) 
(Bekara et al. 2005) and Akaike Weights (Wagenmakers 
et al. 2004). The percentage of false positives (i.e., erro-
neous model selection of ETD diversification) is calcu-
lated from the number of cases where ETD was selected 
as the best model in CTD and CR generated datasets, 
divided by the total number of CTD and CR generated 
datasets. False negatives (i.e., erroneous rejection of 
ETD diversification) are the percentage of ETD gener-
ated datasets that had CTD or CR selected as the best 
model. For medium sized, regular extinction trees, that 
were ETD generated, we also tested an ECTD model, 
which is a combination of the ETD and CTD, equiva-
lent to the MuHiSSE. If ECTD was selected as the best 
model, it would indicate that the trait of interest has 
some effect on diversification dynamics but is not solely 
responsible. We explored the robustness of the results in 
regard to tree characteristics (tree size and imbalance). 
The Sackin Index (Sackin 1972) was used as a measure 
of tree imbalance: it is the average path length from tree 
root to tip (Blum and François 2005), and the less bal-
anced the tree, the larger its Sackin Index value.

Evaluation of SSE Models in Bayesian Framework

We also explored model selection in the presence of 
incomplete tree sampling under a Bayesian framework. 
Bayesian implementations of SSE models are avail-
able in RevBayes (Höhna et al. 2014), mcmc-diversitree 
(Silvestro et al. 2014), and BEAST [the “SSE” package; 
(Mendes et al. 2018; Bouckaert et al. 2019)]. RevBayes 
is particularly flexible, enabling various priors to be 
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set, for example on the root frequencies, and allows for 
uncertainty in the tree topology and branch lengths to 
be marginalized over. The scripts provided in Freyman 
and Höhna (2018) are intended to compare the likeli-
hood of state-dependent and state-independent mod-
els using RevBayes (Höhna et al. 2016), which fits our 
purpose. We simulated 50 ETD datasets using the same 
procedure as in our main analysis (but considering 
only two examined and two concealed states, tree size 
ranged from 100 to 250 species; see note on computing 
time below), where 60% of the species were kept under 
both trimming methods: random and biased. We ran 
RevBayes’s routine for state-dependent and state-in-
dependent models on each simulated dataset with two 
different setups for the SF. In one setup, we used a uni-
form prior with lower bound of 0.3 and upper bound 
of 0.9 (i.e., wide prior), whereas the other setup fea-
tured lower bound of 0.5 and upper bound of 0.7 (i.e., 
narrow prior). We used a stepping-stone approach to 
compute the marginal likelihood and bayes factor (Kass 
and Raftery 1995) to find the model with the highest 
statistical support. The major computational resources 
necessary to conduct this analysis prevented us from 
testing other scenarios under Bayesian framework (for 
the RevBayes analysis we used 192000 hours of com-
puting time: two sampling methods × two priors × two 
dependence modes × 50 trees, 20 days each).

Results

Effects of Phylogenetic Tree Size and Sampling Fraction, 
When the Sampling Fraction is Known and Taxonomically 

Unbiased

To test the effect of phylogenetic tree size, we compared 
randomly trimmed phylogenies of large (1000–5000 
tips), medium (450–650 tips), and small (150–250 tips) 
sizes. As expected, SecSSE performed best with larger 
trees and those with more complete sampling (Fig. 2; 
Supplementary Table S1). Correct model selection was 
reduced in smaller phylogenetic trees, and under low 
SFs across all phylogeny sizes. For large trees, the false 
positive rate was ~ 6.5% when the SF ≥ 60, and increased 
to 17% false positives rate at SF 40 (Supplementary Table 
S1, set 10; Fig 2). Medium sized trees had false positive 
rates of ~ 14.5% when SF ≥ 80, this rate became > 22% at 
SF 40. Small trees had a higher false positive rate of 20% 
at SF 100, this decreased to 16% at SF 40, however, the 
rates of false negatives increased dramatically: from 9% 

at SF 100, to 55% at SF 40 (Supplementary Table S1; Fig 
2). In contrast, false negatives were negligible (< 5%) for 
large and medium sized trees when the SF was ≥ 60% 
(Fig. 2 and Supplementary Table S1). Results were very 
similar for trees with higher extinction rates (Fig.2 and 
Supplementary Table S3).

Akaike weights were higher in correctly selected 
models compared to incorrectly selected models (Fig. 
3); the difference was most pronounced in large trees, 
and less so in small trees. Mean Akaike weight values 
for correctly and incorrectly selected models were more 
similar at lower SFs (Fig. 3). The ECTD model was 
heavily penalized in the AICc analysis due to too many 
free parameters (11 in ECTD compared to 5 in ETD) and 
as such was never selected as the best model, even with 
ECTD simulated phylogenetic trees (Supplementary 
Table S4). With so many variables in the ECTD model, 
the parameter space becomes too wide, resulting in 
some model runs being incomplete even after 10 opti-
mization cycles.

Tree imbalance, as determined via Sackin index, did 
not affect correct model selection for complete or ran-
domly trimmed phylogenies The random sampling 
procedure removed tree tips randomly and conse-
quently transition events were also removed randomly 
as we found that number of transitions out of a given 
state were not different than transitions going into that 
state (e.g., 1 -> 2 = 2 -> 1). Moreover, the number of tran-
sitions lost across the examined trait were similar than 
in the concealed trait (Supplementary Fig. S3).

Parameter estimation was more accurate and precise 
at higher SFs, whereas variation in parameter estimates 
increased with decreasing SF (Fig. 4). Small trees had the 
largest variation in their parameter estimates, while large 
trees had the smallest variation (Fig. 4). The only excep-
tion was the net diversification rates of CTD generated 
trees, which showed little difference in parameter estimate 
variation across tree size (Fig. 4). In most cases, large trees 
at SF ≥ 40 had less variation in parameter estimates com-
pared to medium sized trees at SF 100 (Fig. 4). Extinction 
rates for phylogenies generated with low extinction (µ = 
0.001) were generally over-estimated (e.g., for medium 
trees at SF 100, mean = 0.0284 ± 0.0371; median = 0.0111), 
whereas in the regular extinction sets (µ = 0.05), extinction 
rates were marginally under-estimated (e.g., for medium 
trees at SF 100, mean = 0.0442 ± 0.0418; median = 0.0384). 
There were occasional high outliers for the transition rate 
estimates; this occurred with ETD, CTD and CR generated 
trees, but only affected medium sized trees at SF 20 and 
small trees at SF 60 or lower (Fig. 4).

Table 1  Mis-specified SF sets

 Sampling fraction (%)

True SF 100 80 60 40 20 
Mis-specified SF 80 100

60
100 80

40
100 80 –

Note: 100% is a complete phylogenetic tree; 20% is a phylogenetic tree containing only 20% of tips from the complete tree. In mis-specified 
SF, columns indicate what the True SF was mis-specified as; for example, True SF 80%, was mis-specified as SF 100% and SF 60%. Mis-specified 
sets were done on random and bias trimmed medium sized trees.
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Effects of Sampling Bias When the Sampling Fraction is 
Correctly Specified

Medium sized phylogenetic trees that were trimmed 
randomly, or with taxonomic bias, were compared to 
test the effects of sampling bias. Random sampling 
led to better model performance than biased sampling 
for both model selection and parameter estimation 
(Supplementary Table S1, Figs. 2, and 4). Randomly 
trimmed trees had lower rates of false negatives than 
biased trimmed trees (Supplementary Table S1). Biased 
trimmed trees had a lower rate of false positives com-
pared to randomly trimmed trees at SF 80, but at SF 
60 this was reversed (Supplementary Table S1). At SF 
20, the percentage of false positives was considerably 
higher for biased trimmed trees compared to randomly 
trimmed trees (Supplementary Table S1). In biased 
trimmed sets, most false positives came from an errone-
ous ETD selection of a CR generated tree (Supplementary 
Table S1). In contrast, for randomly trimmed trees, most 
false positives came from an erroneous ETD selection 
of a CTD generated tree (Supplementary Table S1). Net 
diversification rate estimates were considerably more 
accurate in randomly sampled trees (Fig. 5). For biased 
trimmed trees, as SF decreased, net diversification rate 

estimates became more inaccurate (Fig. 5). Figure 5 
shows that, even though the rate estimates are not accu-
rate, the model is able to detect differences across the 
three states and accommodates the rates of net diversi-
fication to maximize this difference.

Effects of Mis-specifying the Sampling Fraction

Mis-specifying the SF by ±20% (of the total number 
of tips) reduced the accuracy of model selection (Fig. 6) 
and parameter estimates (Fig. 5). Random and biased 
sampled phylogenetic trees were affected by mis-speci-
fication of the SF in a similar manner. Specifying the SF 
as higher than its true value often caused an increase 
in false positives (Fig. 6), while under-specifying the 
sampling faction gave similar or slightly lower rates 
of false positives compared to correctly specified SF 
sets (Fig. 4; Supplementary Table S2). Similar to cor-
rectly specified SF sets, false negatives were negligible 
(≤ 5%) when the true SF was ≥ 60%, irrespective of the 
degree of mis-specification; the only exception to this 
was Set 6b, which had a much higher false negative rate 
(Supplementary Table S2).

Mis-specifying the SF affected net diversification 
rate estimates in some sets, most noticeably “bias 

Figure 2.  False positives (A) and false negatives (B) from all correctly specified sampling fraction sets, including randomly trimmed large, 
medium, and small trees, as well as bias trimmed trees (medium B), and trees with different extinction rates (small HX and medium HX).
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Figure 3.  Model selection. Akaike weights of correctly (blue) and incorrectly (red) selected models of each size and trimming method (R = 
randomly trimmed; B = biased trimmed), at each SF. All three generating models for each SF are grouped into the violin plot; for each pair of 
violin plots n = 300.

Figure 4.  Parameter estimates for correctly specified SF sets of randomly trimmed ETD (examined trait dependent), CTD (concealed trait 
dependent) and CR (constant rate) generated trees. Colors indicate tree sizes. The horizontal line indicates the true parameter value. Note that 
these plots include all generated trees, regardless of whether the generating model was selected as the best model or not.
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ETD”, “random ETD” and “random CR” (Fig 5, 
Supplementary Fig. S4). Values were over-estimated 
when SF was specified as lower than its true value (i.e., 
the clade was larger than thought), and under-estimated 
when SF was specified as higher than its true value (i.e., 
the clade was smaller than thought; Supplementary Fig. 
S4). These effects were most noticeable at lower SFs. 
Transition rate estimates were similar in correctly spec-
ified and mis-specified sets (Supplementary Fig. S4). 
Top left panel in Figure 4 shows that even though net 
diversification rate estimates were inaccurate when the 
SF was mis-specified (i.e., boxplots with wide ranges), 
particularly in small trees, there was still little overlap 
between rate estimates for each trait state. This suggests 
that the model was able to correctly detect which trait 
state had a comparatively higher net diversification rate 
and which trait state had a lower rate (i.e., the median 
for estimates are roughly at the true value).

Specifying the Sampling Fraction as a Range

When using RevBayes, we found that the signal of 
state-dependent diversification is correctly recovered 
in all cases under both sampling methods when the 
prior distribution of SF was narrow (Table 2). However, 
when the uncertainty around the true completeness of 
the dataset is higher and the prior distribution of SF is 
wider, in 10% of cases the state-independent model was 
wrongly selected as being the best performing. Even 
though bayes factor did not point to ETD as the best 
performing model in those datasets, we note that the 

rate estimates taken from the MCMC posterior distri-
bution did include the true generating rates. These dis-
tributions have an important overlap which is related 
to the failure to detect state-dependent diversification 
(Supplementary Fig. S5).

Discussion

In this study, we have explored how incomplete sam-
pling of phylogenetic trees, and mis-specification of the 
SF, can affect the ability of SSE models to detect trait 
dependent diversification and estimate diversification 
rates. We found that both taxonomic biased sampling 
and mis-specifying the SF can severely decrease the 
accuracy of parameter estimation. Sampling fraction 
mis-specification had more minor effects on model 
selection, with false positive rates only increasing when 
the SF was over-specified. Taxonomic biased sampling 
reduced the accuracy of parameter estimates, more so 
at lower SFs, and sometimes increased the rates of false 
positives and false negatives compared to random sam-
pling. When using biased sampled phylogenetic trees, 
there is a greater risk of obtaining a false positive from 
a neutrally diverging phylogeny. Smaller phylogenetic 
trees and any sized phylogenetic trees under low true 
SFs (< 60%) have higher rates of false positives, ren-
dering them less suitable for current SSE analyses. 
Although SecSSE was the main method used in this 
study, our results are relevant to other SSE methods 

Figure 5.  Net diversification rate estimates of the medium size ETD generated phylogenetic trees, that were randomly (R; top row) or 
biased (B; bottom row) trimmed. ND1, ND2 and ND3 indicate the net diversification rate for trait state 1, 2 and 3 respectively. Colors indicate if 
the SF was correctly specified or mis-specified. The horizontal line indicates the true parameter value. Plots include all generated trees for each 
set, regardless of whether the generating model was selected as the best model or not.
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that incorporate hidden traits. The CTD model used 
is equivalent to the CID-3 model in HISSE (Beaulieu 
and O’Meara 2016; Herrera-Alsina et al. 2019), mean-
ing our general findings are applicable to HISSE and its 
relatives.

Effects of Tree Size

Model selection accuracy was severely reduced in 
small phylogenies (150–250 tips) even at high SFs (i.e., 
nearly complete phylogenetic trees). This concurs 

with previous work using BiSSE, which also showed 
that small trees (fewer than 300 tips) are less suitable 
for SSE modeling (Davis et al. 2013). This is because 
the statistical power of SSE models partially depends 
on the number of taxa in the phylogenetic tree (Davis 
et al. 2013). Across all phylogenetic tree sizes, rates of 
false positives and false negatives were elevated at 
lower SFs. This is due to decreased sizes of phyloge-
netic trees and increased uncertainty in the models, 
both of which come as a consequence of lower SFs.

Figure 6.  Percentages of false positives and false negatives in Random and Bias sampled sets. Colors indicated the difference from the true 
SF, that is if the true SF is 80, at −20 the SF was specified as 60, and at +20 the SF was specified as 100.

Table 2  Number of datasets that were incorrectly (column CTD) and correctly selected (column ETD) during RevBayes analysis using a 
narrow and wide priors for SF

Prior Sampling CTD ETD 

Narrow Random 0 50
Bias 0 47

Wide Random 8 42
Bias 1 49

Note: The table also includes two different methods of tree tip sampling.
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When interpreting parameter estimates from SSE 
models, it is therefore important to consider phyloge-
netic tree size. Interestingly, large phylogenetic trees 
(1000–5000 tips) under low SF (40%) had similar or 
better parameter estimates than medium sized phy-
logenetic trees (450–650 tips) at high SFs (Fig. 4). This 
suggests that it may be better to use a larger, but incom-
plete phylogeny, rather than a smaller more complete 
sub-clade, to study the patterns of trait dependent 
diversification. The larger (and more complete) the 
phylogenetic tree, the more accurate the speciation and 
transition rate estimates.

As in other SSE performance studies (Maddison et 
al. 2007b; Beaulieu and O’Meara 2016), extinction rate 
estimates were imprecise, due to the lack of informa-
tion about extinction in phylogenetic trees (Rabosky 
2006). In contrast to some studies (e.g., Höhna et al. 
2011), but in agreement with others (e.g., Beaulieu and 
O’Meara, 2016), we found that some extinction rate 
estimates tended to be over-estimated. Specifically, the 
low extinction sets (µ = 0.001) tended to have elevated 
extinction rate estimates. We believe this is due to the 
extinction rate parameter being set so low, because in 
the regular extinction rate sets (µ = 0.05), extinction rate 
estimates were generally under-estimated. However, 
there was a large amount of variation in all parameter 
estimates. Previous work using BiSSE and simulated 
phylogenies with 500 tips, showed that speciation rate 
estimates remain accurate down to ~ 50% SF (Fitzjohn 
et al. 2009). We concur with this finding and add that 
speciation rate estimates for larger phylogenetic trees 
(≥ 1000 tips in the complete in tree) could remain accu-
rate at slightly lower SFs (~ 40%), although accuracy 
is improved with greater sampling. As suggested by 
Beaulieu and O’Meara (2016), more accurate net diver-
sification rate estimates can be obtained from larger 
phylogenetic trees, making it possible to distinguish 
between trait states with smaller rate differences. 
However, while larger trees are better suited to SSE 
analyses in terms of model selection and parameter 
estimation, the time and computational power required 
for these analyses is high.

Tip Ratio Bias and Loss of Trait State Transitions

We found that datasets where the inference analysis 
failed to select the right model have very similar struc-
ture in terms of transition type lost than those data-
sets where the analysis recovered the right generating 
underlying process. However, it was often the same 
phylogenetic trees that had incorrect model selection at 
different SFs, suggesting that there may be something 
inherent within these trees that made it more difficult 
for the model to detect the correct diversification type. 
The number of trait state transitions lost may have a 
different impact on simulations with different param-
eter settings.

Further studies will need to use scenarios with asym-
metrical transition rates. Differences in transition rates 
may be more important when there are trait biases, that 

is when some trait states are more likely to be sampled 
than others. Equally, trait biases are more prevalent 
when transition rates are asymmetrical (Davis et al. 
2013). For example, in the scenario where it is easy to 
transition into a specialist state, but harder to transi-
tion out of the specialized state, this asymmetry could 
lead to trait state biases with more tips in the special-
ized state, unless this specialized state also had a lower 
speciation or higher extinction rate. It would be inter-
esting to test how loss of trait state transitions affects 
SSE models when there are trait biases. Other future 
work that could be beneficial to further understanding 
how loss of trait state transitions from incomplete phy-
logenetic trees affect SSE models include: 1) exploring 
transitions lost under different transition rate scenarios 
such as low, medium, and high transition rates and 2) 
asymmetrical transition rates and different speciation/
extinction rates.

Effects of Sampling Regime

Phylogenetic trees may suffer sampling bias due to 
certain sub-clades containing greater numbers of rare 
or undescribed species. In other cases, some species 
may be deliberately removed from the clade. Overall, 
if phylogenetic trees are incomplete, our results show 
that is better for them to be randomly sampled rather 
than sampled with taxonomic bias. At high SF (80%), 
biased sampling represents a minor source of inaccu-
racy: parameter estimates were similar to those from 
randomly sampled phylogenies, and rates of false pos-
itives were lower than in randomly sampled phylog-
enies. However, when sampling is less complete (SF 
≤ 60%), parameter values became over-estimated in 
biased sampled sets but remained accurate in randomly 
sampled sets. As SF decreased, rates of false negatives 
became higher in biased sampled sets compared to ran-
domly sampled sets. This means there is a greater risk 
of erroneously rejecting trait dependent diversification 
when a phylogeny is sampled with taxonomic bias.

Similarly to Fitzjohn et al. (2009), we found that ran-
domly trimmed CR generated trees maintained ~ 85% 
correct model selection across all SFs. In contrast, we 
found that biased trimmed CR generated trees led to 
more false positives and to considerable reductions in 
correct model selection at lower SFs. This means that 
there is a greater risk of erroneously finding evidence 
for trait dependent diversification from a biased sam-
pled phylogenetic tree. This may be due to sampling 
method, as some sub-clades were heavily trimmed (to 
simulate under-sampling), leading to longer branch 
lengths, and in the CR model branching patterns are the 
only information available to estimate diversification.

Currently, the only way to specify the SF in most SSE 
methods is by trait state, so it is not always possible to 
account for alternative sampling methods or taxonomic 
biases. Clade specific SFs were previously enabled in 
HiSSE but were removed as they caused mathemati-
cal errors (Beaulieu 2020); however, clade specific SFs 
still exist in diversitree (FitzJohn 2012). RevBayes can 
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also account for different sampling methods: uniform 
(random), diversified, and empirical (clade specific) 
sampling strategies can be accommodated (https://
revbayes.github.io/tutorials/divrate/sampling.html). 
When it is not possible to sample clades completely, it is 
recommended to assess the degree of bias in sampling 
in SSE modeling. When clades are biased sampled and 
≤ 60 % complete, extra caution is advised when inter-
preting the results of SSE models. It is also important 
to bear in mind that parameter estimates will likely be 
higher than their true value when trees are biased sam-
pled and have a low SF.

Effects of Mis-specifying the Sampling Fraction

It can be difficult to accurately set the SF of empir-
ical phylogenetic trees as the actual number of extant 
species is often unknown. Organisms which may be 
particularly problematic in this regard include bacteria, 
archaea, and fungi, as these groups contain many unde-
scribed species (Barns et al. 1994; Lambais et al. 2006; 
Mueller et al. 2007; Brock et al. 2009; Öpik et al. 2013; 
Looney et al. 2016). Our findings indicate that it is not 
acceptable to guess the SF if it is completely unknown: 
inaccurate SF estimates have a high risk of false pos-
itives and inaccurate parameter estimates. Therefore, 
SSE modeling is most suitable for incomplete recon-
structions when the SF is known with some degree of 
accuracy. Sensitivity analysis to SF specification should 
be performed to provide confidence to results when the 
SF has been estimated.

Sampling fraction specifications of ± 20% inaccuracy 
led to inaccurate parameter estimates. In incompletely 
sampled phylogenetic trees, the apparent number of 
speciation and character change events is reduced 
because tips/branches are missing from the tree. If 
incomplete sampling is not accounted for, this can lead 
to likelihoods favoring lower diversification and tran-
sition rate estimates (Fitzjohn et al. 2009). When the SF 
is thought to be higher than it truly is (over-specified; 
for example, there is a 60% complete phylogenetic tree, 
but it is specified as 90% complete), not all tips and spe-
ciation events will be accounted for, leading to lower 
speciation rate estimates. Conversely, when the SF is 
thought to be lower than it truly is (under-specified; 
for example, there is a 90% complete phylogenetic tree, 
but it is specified as only 60% complete), the model will 
account for more tips and speciation events than there 
actually were, leading to higher diversification rate 
estimates.

We suggest that parameter estimates are interpreted 
cautiously when there is uncertainty around the SF 
approximation. When considering net diversification, 
the differences in rate estimates with SF mis-specifica-
tion were only present with biased sampled phyloge-
netic trees. Even with low levels of sampling, the model 
correctly detects differences in diversification rates 
across states so that it tries to maximize the difference 
between trait 1 and 3 rates. Even though the estimated 
difference in rates is quite close to the true one (0.4), the 

overall estimates are inaccurate. This is more evident 
under bias sampling (Fig. 5, bottom row) where net 
diversification rate for trait 1 is under-estimated and at 
the same time, for trait 3 is over-estimated. Interestingly, 
specifying the correct SF does not lead to better rate esti-
mates under biased sampling. This is likely to be result 
of 1) confounding extinction with missing branches due 
to sampling, and 2) SSE models always assume that 
non-sampled branches are randomly distributed. In the 
presence of bias sampling, over-specifying SF yields to 
better estimates. When diversification rate is separated 
into rates of speciation and extinction, estimates are 
highly affected by SF mis-specification. However, the 
relative speciation rate estimates (i.e., which trait states 
have the lowest and highest speciation rates) is robust 
to changes in SF specification.

Due to unknown numbers of undescribed species 
and taxonomic uncertainties, it may be more common 
for researchers to over-specify the SF, thinking that they 
have a greater proportion of the phylogeny sampled 
than they actually do (Vieites et al. 2009; Pimm et al. 
2014; Chan et al. 2018; Dickens et al. 2019). Our results 
show that, in contrast, cautiously under-specifying the 
SF may not be as bad as over-specifying it: false positive 
rates were elevated when the SF was over-specified but 
remained similar to (or even slightly lower than) cor-
rectly specified sets when the SF was under-specified. 
With an 80% complete (randomly trimmed, medium 
sized) phylogenetic tree, when the SF was correctly 
specified (as 80%), the rate of false positives was 14.5%; 
when the SF was under-specified as 60% complete, the 
false positive rate was slightly lower (13.5%), but when 
the SF was over-specified as 100% complete, false posi-
tives were higher (18%). As SF decreased, rates of false 
negatives became higher in biased sampled sets com-
pared to randomly sampled sets. This means there is 
a greater risk of erroneously rejecting trait dependent 
diversification when a phylogeny is sampled with tax-
onomic bias. In SSE analyses, we recommend carrying 
out sensitivity analysis of SF specification that spans, at 
a minimum ± 20% of the estimated fraction, to deter-
mine if the results are robust to variation in the SF speci-
fication. The range of SFs used should reflect how much 
uncertainty there is in the completeness of the tree.

Bayesian Analysis

One alternative method for dealing with an uncer-
tain SF utilizes Bayesian analyses with a hyperprior 
placed on the SF. No empirical studies have thus far 
used this method for dealing with SF uncertainty. More 
commonly used methods to specify the SF in Bayesian 
SSE studies are to specify the probability of sampling 
species within the clade, based on the total number of 
known species (tips) and the number of species sam-
pled (e.g., Wessinger et al. 2019; Varga et al. 2021), or 
assuming that all extant species have been included in 
the phylogeny (e.g., Condamine et al. 2018). Studies 
using RevBayes and HiSSE that may have benefitted 
from incorporating uncertain sampling include a study 
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on weevils (Letsch et al. 2018) and a study on basid-
iomycete fungi (Varga et al. 2021), because these taxa 
likely have undescribed species. The use of RevBayes 
in SSE analysis is promising, especially when SF is not 
well known. However, it is computationally slow which 
compromises its applicability in large datasets.

Conclusions and Best Practices

Much progress has been made from the early days of 
SSE models but work still needs to be done to make SSE 
methods more robust to the sampling issues explored 
here. Areas which require further attention include 
dealing with different types of sampling, uncertainty in 
tree topology, exploring how loss of trait state transi-
tions affect SSE models, and developing robust meth-
ods for confident analyses of smaller phylogenetic trees. 
Additionally, a more thorough exploration of the effi-
cacy of using a SF prior within a Bayesian framework is 
needed. Most empirical studies will to some extent vio-
late the assumption that sampling is uniform and ran-
dom across the phylogeny. It would be highly desirable 
for SSE methods to be able to account for taxonomic 
bias. One possibility which could provide more infor-
mation to the model and decrease uncertainty around 
the SF, could be to allow for SF specification both by 
trait state and by clades at the same time; however, this 
would be challenging to develop (for birth-death pro-
cess see Höhna et al. 2011).

This work has helped to inform how much error in SF 
estimates is acceptable, enabling confident SSE model-
ing of phylogenies where the SF can be reasonably esti-
mated. To conclude, we provide suggestions for best 
practices when using SSE methods on incompletely 
sampled phylogenetic trees.

•	 It may be better to use a larger but somewhat 
incomplete phylogeny, rather than a smaller but 
more complete subclade. Larger (≥ 450 tips) and 
more complete (≥ 60% SF) phylogenetic trees are 
most suitable for SSE analyses, but tree size is gen-
erally more important than completeness.

•	 Taxonomic biases in sampling can be problematic 
when phylogenetic trees are < 80% complete. We 
recommend assessing the degree of bias in sam-
pling, as there are greater risks of false positives 
and inaccurate parameter estimates when trees 
are ≤ 60% complete and have been sampled with 
taxonomic bias. If possible, additional sampling 
of missing tips is advised, to reduce sampling bias 
and increase the sampling faction of the phylog-
eny: increased taxon sampling remains one of the 
best methods to increase accuracy of inferences 
drawn from phylogenetic trees (Heath et al. 2008). 
Inclusion of tips with uncertain trait states is pos-
sible in some packages (e.g., SecSSE), and is one 
possible way to increase the SF.

•	 For SSE methods, we do not recommend exclud-
ing tips from phylogenetic trees, for example 
because of regional sampling, as this lowers the 

SF, increases uncertainty in the model, and may 
increase sampling bias.

•	 Mis-specification of SF can reduce correct model 
selection and leads to inaccuracies in parameter esti-
mates. We advise that SSE modeling is most suitable 
for incomplete phylogenies when the number of 
extant species in the clade is known with some accu-
racy. It is worth conducting a thorough examination 
to estimate the SF as precisely as possible. We sug-
gest two methods for dealing with uncertainty in the 
SF: 1) using the ML approach, sensitivity analyses 
should be performed across an appropriate range of 
SFs (at least ± 20% of the estimated SF), in order to 
confirm that results are robust to variation in SF spec-
ification; 2) using Bayesian analyses of SSE models 
in order to specify a range of possible SFs as a prior. 
These methods are not mutually exclusive, and the 
most confident results may be obtained by imple-
menting both approaches.

Supplementary Material

Data available from the Dryad Digital Repository: 
https://doi.org/10.5061/dryad.wwpzgmsjp.
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