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Abstract. —Understanding the origins of diversity and the factors that drive some clades to be more diverse than others
are important issues in evolutionary biology. Sophisticated SSE (state-dependent speciation and extinction) models
provide insights into the association between diversification rates and the evolution of a trait. The empirical data used
in SSE models and other methods is normally imperfect, yet little is known about how this can affect these models.
Here, we evaluate the impact of common phylogenetic issues on inferences drawn from SSE models. Using simulated
phylogenetic trees and trait information, we fitted SSE models to determine the effects of sampling fraction (phylogenetic
tree completeness) and sampling fraction mis-specification on model selection and parameter estimation (speciation,
extinction, and transition rates) under two sampling regimes (random and taxonomically biased). As expected, we
found that both model selection and parameter estimate accuracies are reduced at lower sampling fractions (i.e., low
tree completeness). Furthermore, when sampling of the tree is imbalanced across sub-clades and tree completeness is <
60%, rates of false positives increase and parameter estimates are less accurate, compared to when sampling is random.
Thus, when applying SSE methods to empirical datasets, there are increased risks of false inferences of trait dependent
diversification when some sub-clades are heavily under-sampled. Mis-specifying the sampling fraction severely affected
the accuracy of parameter estimates: parameter values were over-estimated when the sampling fraction was specified as
lower than its true value, and under-estimated when the sampling fraction was specified as higher than its true value.
Our results suggest that it is better to cautiously under-estimate sampling efforts, as false positives increased when
the sampling fraction was over-estimated. We encourage SSE studies where the sampling fraction can be reasonably
estimated and provide recommended best practices for SSE modeling. [Trait dependent diversification; SSE models;

phylogenetic tree completeness; sampling fraction. ]

Understanding the origins of diversity and why some
clades are more diverse than others are fundamen-
tal questions in evolutionary biology. Estimating the
diversification rate of lineages, and how they vary
across phylogenetic trees, is essential to developing this
understanding. The per-lineage rates of speciation and
extinction in a clade can be affected by environmen-
tal and geographical factors (Ricklefs 2007), time (or
clade age; Henao Diaz et al. 2019), and species’ traits
(Jablonski 2008; Rabosky and McCune 2010). Possessing
a certain trait state can promote speciation by increas-
ing fitness or reproductive output (Liem 1973; Weber
and Agrawal 2014; Helmstetter et al. 2016; Laenen et
al. 2016; Igea et al. 2017). Conversely, some trait states
may hinder speciation or increase extinction rates; for
example, specialization has been shown to reduce spe-
ciation rates in some clades (Day et al. 2016), but pro-
motes it in others (Resl et al. 2018; Tonini et al. 2020).

Although differences in diversification rates across trait
states occur frequently (Jablonski 2008), it does not nec-
essarily mean that the trait itself drives alone the clades’
diversification dynamics.

The state-dependent speciation and extinction (SSE)
framework was developed to determine the impact
that the evolution of a trait has on subsequent patterns
of lineage diversification through time, by linking the
presence/absence (or value) of trait states to diversi-
fication rates. To implement this approach and deter-
mine the most likely mode of diversification, Examined
Trait Dependent (ETD) models, which include the trait
hypothesized to affect diversification, are compared to
models with Constant Diversification Rates (CR mod-
els) and Concealed Trait Dependent (CTD) models
[also known as Character-Independent (CID) models]
(Beaulieu and O’Meara 2016). CTD models account for
the possibility that diversification rates do not vary in
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relation to the focal trait, but rather with some unmea-
sured trait(s). The CTD model is always as complex
(in terms of the number of character states) as the ETD
model (in CID notation, the number of character states
has to be specified for example, CID-2 has two charac-
ter states). The use of CTD models successfully reduces
false inferences of trait dependent diversification that
were problematic in earlier SSE tools (Rabosky and
Goldberg 2015; Beaulieu and O’Meara 2016) such as
BiSSE (Maddison et al. 2007a) and QuaSSE (Fitzjohn
2010). The improved suit of SSE models includes
HiSSE (hidden-state-dependent speciation and extinc-
tion) (Beaulieu and O’Meara 2016), GeoHiSSE (a bio-
geographical version) (Caetano et al. 2018), MuHiSSE
(a multi-trait state version) (Nakov et al. 2019; Zenil-
Ferguson et al. 2019), MiSSE (Vasconcelos et al. 2022),
and SecSSE (several examined and concealed state
dependant speciation and extinction) (Herrera-Alsina
et al. 2019).

The accuracy of model selection (i.e., comparing
ETD, CTD and CR models) and parameter estimation
(speciation, extinction, and transition rate estimates) in
state-dependent diversification analyses is dependent
on several factors, including: the similarity of true spe-
ciation rates across trait states, the number of transitions
among trait states, completeness of trait information,
and accuracy and completeness of the phylogenetic
tree. It is harder to find evidence for trait dependent
diversification when speciation rates are similar to each
other (Beaulieu and O’Meara 2016) and when extinction
rates are high (Herrera-Alsina et al. 2019). Incomplete
trait information adds uncertainty to models: a missing
tip in the phylogenetic tree or lack of trait information
for an extant species will render the contribution of that
branch to the analysis null. Some tools, such as SecSSE,
can account for partial trait state data which reduces the
negative effect of missing trait information (Herrera-
Alsina et al. 2019). Missing tips can result in loss of trait
state transitions; this is a crucial piece of information for
SSE modeling and lost transitions will likely negatively
impact the analysis. Moreover, phylogenetic trees are
sources of uncertainty themselves, with potential inac-
curacies both in the topology of the tree and the branch
lengths (Felsenstein 1985; Donoghue and Ackerly 1996).

Diversification analyses are normally intended for
complete clades, but phylogenetic trees may be incom-
pletely sampled, or only a (potentially polyphyletic)
subset of taxa may be chosen for analysis. For example,
the number of species/phylotypes in the entire clade
may be unknown (e.g., in microbes) or the taxonomic
scope of a study could be geographically limited. In
SSE models, the sampling fraction is the percentage
of taxa in the clade included in the phylogenetic tree
(Nee et al. 1994; Fitzjohn et al. 2009; Chang et al. 2020),
is specified separately in each trait state. The sampling
fraction setting typically assumes that taxa are missing
from the clade at random; however, this is rarely true
and does not reflect realistic sampling associated with
empirical phylogenies. Older, more abundant lineages
are less likely to be excluded than younger lineages in

incompletely sampled trees (Davies et al. 2011). In some
studies, certain sub-clades, for example those from the
tropics in contrast to temperate counterparts, may be
highly under-sampled or completely excluded, poten-
tially affecting the accuracy of SSE analysis (Titley et
al. 2017). In studies that focus on a specific geographic
region, species from outside that region would be
removed. Plant collection biases have been well doc-
umented (Rich and Woodruff 1992; Moerman and
Estabrook 2006; Corlett 2016; Daru et al. 2018) and some
families (e.g., Asteraceae, Cyperaceae, and Poaceae)
have phylogenetic biases in collection frequency (Daru
et al. 2018), so sampling is neither uniform nor random
across these phylogenies. Animals that are particularly
prone to taxonomic bias include invertebrates such
as Insecta, Arachnida, and Gastropoda (Troudet et al.
2017). Larger animals are not exempt from biases; for
example, there is a lack of genetic data for bird species
from tropical regions (Reddy 2014). Indeed, there is a
general pattern of under-sampling of tropical species
compared to those in temperate areas (Chek et al. 2003;
Collen et al. 2008; Titley et al. 2017). Microbial phylo-
genetic reconstructions are likely to almost always be
under-sampled and there may often be biases related
to geography or environmental conditions, for example
with higher sampling occurring under certain pH con-
ditions (Gubry-Rangin et al. 2015).

In cases where the total number of species in a clade is
unknown, the sampling fraction could be mis-specified,
and this too may affect diversification analyses. Issues
with clade specific sampling factions have previously
been documented (Beaulieu 2020) but little work has
been done on the effects of sampling extent, tree imbal-
ance, and mis-specification on SSE model accuracy
(Nee et al. 1994; Fitzjohn et al. 2009; Chang et al. 2020).
However, understanding the consequences of different
sampling regimes on model comparison and parameter
estimation is paramount to give confidence to SSE stud-
ies with incomplete phylogenetic trees. Conducting
SSE analyses in a Bayesian framework may be a use-
ful method to reduce uncertainty around parameter
estimation and improve the ability to detect signals
of trait-dependence diversification. For instance, with
Bayesian analysis is possible to account for sampling
fraction uncertainty, by providing a range of possible
sampling fractions as a prior, although this is not some-
thing that has been implemented in studies yet.

Here, we provide the first in-depth evaluation of how
incomplete phylogenetic information affects the perfor-
mance of SSE models that incorporate concealed /hid-
den traits. We simulated data sets (phylogenetic trees
along with trait information) and fitted SSE models in
order to evaluate model selection under a number of
different scenarios. Specifically, we evaluate the ability
to select the correct type of relationship between trait
evolution and branching patterns, and the accuracy
in estimating parameter values (speciation, extinction,
and transition rates). We focus on four key variables: 1)
sampling fraction; 2) phylogenetic tree size; 3) sampling
regime, in which phylogenies were sampled randomly
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or with taxonomic bias; and 4) mis-specification of sam-
pling fraction (where the true clade size is either under-
or over-specified). We also used Bayesian analysis with
a prior on the sampling fraction to deal with unknown
sampling fractions.

MATERIALS AND METHODS

Trait and Phylogeny Simulation

We simulated phylogenetic trees and accompanying
trait data under three types of trait dependent diver-
sification—ETD, CTD, and Constant Rate (CR). We
applied the same simulation procedure described in
Herrera-Alsina et al. (2019). In a nutshell, the simula-
tions are run in continuous time, where first the wait-
ing times are taken from an exponential distribution
whose parameter is the sum of the per-lineage rates of
events (i.e., speciation, extinction, and trait evolution).
Then, a species is randomly taken to undergo one of
the events and a record of it is kept. Specifically, we
simulated the evolution of two traits that were inde-
pendent from one another. Each trait had three states
(examined trait with states 1, 2 and 3; concealed trait
with states A, B, and C, see below) and all transitions
across the three states were possible at a single rate (g).
This means that the shift from state 1 to state 2 had the
same rate than shifting from state 2 to state 1. Notice
that both traits are combined to yield a nine-state sys-
tem (1A, 2A, 3A, 1B, 2B, 3B, 1C, 2C, 3C) where double
transitions (e.g., the change from 1A to 2C) are not pos-
sible. Although more complex systems (traits states > 4)
are possible in SecSSE (Herrera-Alsina et al. 2019), we
chose three to minimize complexity. One of the traits,
the examined trait, influenced diversification such that
every time a lineage switched to a different trait state,
its speciation/extinction rate was adjusted accordingly.
This trait was the only factor affecting speciation and
extinction dynamics and its” three states were numer-
ically coded (i.e., 1, 2, 3). In contrast, the other trait,
the concealed trait, did not influence diversification,
but rather evolved neutrally over time. This trait’s
states were denoted alphabetically (A, B, C). Because
the concealed trait had the same number of states as
the examined trait (Fig. 1), the CTD model used here
is equivalent to the character-independent (CID-3)
model in HiSSE (Beaulieu and O’Meara 2016; Herrera-
Alsina et al. 2019). We kept track of the evolution of
both traits and at the end of the simulation we retained
the species’ trait states of either the examined trait
(ETD-generating model) or the concealed trait (CTD-
generating model). Note that the CTD model accounts
for trait dependent diversification of an unmeasured
trait (the concealed trait), and it is equal in complex-
ity to the observed trait model. We also ran a simu-
lation where both traits were neutral, and the rate of
diversification did not change across time or lineages
(CR-generating model). In the ETD-generating model,

speciation rates differed only across examined trait
states A1A = A11B = 11C # 12A = A2B = 12C # 13A = A3B
= A3C, while in the CTD-generating model, speciation
rates differed only across concealed trait states 11A =
A2A =23A % 11B = 2B = 13B # 11C = 12C = A3C (Fig. 1).
In the CR-generating model, all speciation rates were
the same regardless of trait state A1A = A1B = 11C = 12A
= 12B = 12C = 13A = A3B = 13C. The resulting simulated
datasets included phylogenetic trees as well as the trait
states associated with them.

We set the speciation and extinction rates within
the ranges previously used to test the performance of
SecSSE analyses (Herrera-Alsina et al. 2019). For ETD
and CTD generated phylogenies, the speciation rates (1)
were: 0.1, 0.3, 0.5; for CR generated phylogenies, all trait
states had the same speciation rate of 0.3. The extinction
rate (1) was set either low (0.001) or regular (0.05). We
did not include models with variable extinction rates
(and/or different transition rates) which adds to the
model complexity and may lead to confounding effects
(Davis et al. 2013). The transition rate (7) was set to 0.4
for all transitions in all phylogenies, and all transitions
between the three states were possible (Fig. 1). The tran-
sition rate is somewhat high, although not unrealistic:
while some empirical SSE studies have found transi-
tion rates similar to the rate we chose (e.g., pollination
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FIGURE 1. Schematic model diagram. Each circle indicates a trait
state combination with one examined trait state (1, 2, or 3) and one
concealed trait state (A, B, or C). The speciation rate (1) for each
trait state combination differed either with the examined trait (ETD
model), or the concealed trait (CTD model). The extinction rate (u)
was the same in every trait state combination. The transition rates (g),
shown in grey for the examined trait and red for the concealed trait,
was symmetrical, that is, the same rate was used for every transition,
and all transitions between trait states were possible.
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in hummingbirds, Wessinger et al. 2019), other stud-
ies have found lower rates [e.g., habitat preference in
Diatoms Nakov et al. (2019); host-plant association in
dragonflies (Letsch et al. 2016); body shape and habi-
tat preference in marine fishes (Rincon-Sandoval et al.
2020)], or much higher rates [mycorrhizal association
in fungi (Looney et al. 2016)]. This also enabled testing
the performance of SecSSE under new conditions, as its
performance has already been documented with tran-
sition rates of 0.05 and 0.1 (Herrera-Alsina et al. 2019).
Phylogenetic trees were simulated in three size groups;
as younger trees have fewer tips, this was achieved by
altering the crown age of trees: large (1000-5000 tips;
age = 23 MY), medium (450-650 tips; age = 19 MY) and
small (100-250 tips; age = 13.4 MY). The range in num-
ber of species within each category of tree size is due
to stochasticity and extinction rate (even with the same
clade age). For each tree size, we simulated 100 phylog-
enies of each diversification mode (ETD, CTD, CR) with
low extinction, giving a total of 300 trees per size group.
For small and medium tree sizes, we also simulated 100
phylogenies of each diversification mode with regular
extinction.

Phylogenetic Tree Trimming

Phylogenetic trees and accompanying trait data were
trimmed (removal of extant tips), either randomly or
with a taxonomic bias (Supplementary Fig. S1), to gen-
erate five sampling fraction (SF) levels in 20% intervals,
that is SF: 100% (the full tree), 80%, 60%, 40%, and 20%.
For random trimming, tips were randomly removed
from across the phylogenetic tree [which is how SSE
models treat the SF of a phylogeny, with the SF specified
for each trait state (Nee et al. 1994; Fitzjohn et al. 2009;
Chang et al. 2020)]. To generate taxonomically biased
sampling, we selected one or two sub-clades (contain-
ing 20-30% of the clade’s size) to be heavily trimmed
(removal of 80-90 % of tips) (Supplementary Fig. S1).
This resulted in slight variation in the final SF (+ 2%) in
each SF level, but this was less than the variation in trait
state percentages (see below).

Randomly trimmed sets were created for all three
phylogenetic tree sizes while taxonomic bias trim-
ming was performed only on medium sized phyloge-
netic trees. Note that we did not explicitly evaluate the
effect of a trait bias: tip loss was done agnostically with
respect to underlying trait state distributions. High tip
ratio bias (e.g., one trait state accounting for < 10% of
tips) can reduce model power and accuracy of param-
eter estimates (Davis et al. 2013). We therefore checked
for tip ratio bias and found that all trait states were
trimmed to a similar percentage—each of the three trait
states accounted for ~33% of tips (Supplementary Fig.
S2) and there were no differences in trait state percent-
ages across tree sizes or trimming methods. Although
our transition rate (§ = 0.4) guarantees that transitions
events are distributed throughout time and lineages,
unsampling some tree tips might lead or not to the loss
of trait state transitions events. The type of trait state

transitions lost during trimming may affect model
power. Therefore, during simulation of the regular
extinction rate phylogenetic trees, the trait state transi-
tions were recorded; for those datasets where the infer-
ence fails to select the right model, we explored whether
they feature asymmetric transition lost (e.g., more 1 -> 2
lost than 2 -> 1) or dissimilar prevalence of concealed /
examined transitions (e.g., more A -> B lost than 1 -> 2).

Sampling Fraction Settings in Maximum Likelihood (ML)
Framework

Using the above sets of simulated trees and trait
states at the tips, SSE model analyses were performed
under two different scenarios: 1) with the SF correctly
specified, and 2) with the SF incorrectly specified (see
Table 1 for details). The SF was specified per trait state:
for example, for SF 60%, the SF was specified as 0.6 for
each of the three trait states (notice that in hisse there
is only global SF that accounts for phylogenetic incom-
pleteness). Additionally, we provided a narrow and a
wide prior for SF in a Bayesian context (see below).

Evaluation of SSE Models in ML

To test the ability of SSE models to select the correct
(generating) model of trait dependent diversification
under the above scenarios, we ran SecSSE analyses
under the three models (ETD, CTD and CR) and com-
pared Akaike information criterion values (AICc)
(Bekara et al. 2005) and Akaike Weights (Wagenmakers
et al. 2004). The percentage of false positives (i.e., erro-
neous model selection of ETD diversification) is calcu-
lated from the number of cases where ETD was selected
as the best model in CTD and CR generated datasets,
divided by the total number of CTD and CR generated
datasets. False negatives (i.e., erroneous rejection of
ETD diversification) are the percentage of ETD gener-
ated datasets that had CTD or CR selected as the best
model. For medium sized, regular extinction trees, that
were ETD generated, we also tested an ECTD model,
which is a combination of the ETD and CTD, equiva-
lent to the MuHiSSE. If ECTD was selected as the best
model, it would indicate that the trait of interest has
some effect on diversification dynamics but is not solely
responsible. We explored the robustness of the results in
regard to tree characteristics (tree size and imbalance).
The Sackin Index (Sackin 1972) was used as a measure
of tree imbalance: it is the average path length from tree
root to tip (Blum and Francois 2005), and the less bal-
anced the tree, the larger its Sackin Index value.

Evaluation of SSE Models in Bayesian Framework

We also explored model selection in the presence of
incomplete tree sampling under a Bayesian framework.
Bayesian implementations of SSE models are avail-
able in RevBayes (Hohna et al. 2014), mcmc-diversitree
(Silvestro et al. 2014), and BEAST [the “SSE” package;
(Mendes et al. 2018; Bouckaert et al. 2019)]. RevBayes
is particularly flexible, enabling various priors to be
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TaBLE1 Mis-specified SF sets

Sampling fraction (%)

True SF 100 80
Mis-specified SF 80 100
60

60 40 20
100 80 100 80 -
40

Note: 100% is a complete phylogenetic tree; 20% is a phylogenetic tree containing only 20% of tips from the complete tree. In mis-specified
SF, columns indicate what the True SF was mis-specified as; for example, True SF 80%, was mis-specified as SF 100% and SF 60%. Mis-specified

sets were done on random and bias trimmed medium sized trees.

set, for example on the root frequencies, and allows for
uncertainty in the tree topology and branch lengths to
be marginalized over. The scripts provided in Freyman
and Hohna (2018) are intended to compare the likeli-
hood of state-dependent and state-independent mod-
els using RevBayes (Hohna et al. 2016), which fits our
purpose. We simulated 50 ETD datasets using the same
procedure as in our main analysis (but considering
only two examined and two concealed states, tree size
ranged from 100 to 250 species; see note on computing
time below), where 60% of the species were kept under
both trimming methods: random and biased. We ran
RevBayes’s routine for state-dependent and state-in-
dependent models on each simulated dataset with two
different setups for the SE. In one setup, we used a uni-
form prior with lower bound of 0.3 and upper bound
of 0.9 (i.e., wide prior), whereas the other setup fea-
tured lower bound of 0.5 and upper bound of 0.7 (i.e.,
narrow prior). We used a stepping-stone approach to
compute the marginal likelihood and bayes factor (Kass
and Raftery 1995) to find the model with the highest
statistical support. The major computational resources
necessary to conduct this analysis prevented us from
testing other scenarios under Bayesian framework (for
the RevBayes analysis we used 192000 hours of com-
puting time: two sampling methods x two priors x two
dependence modes x 50 trees, 20 days each).

REsuLTSs

Effects of Phylogenetic Tree Size and Sampling Fraction,
When the Sampling Fraction is Known and Taxonomically
Unbiased

Totest theeffect of phylogenetic tree size, we compared
randomly trimmed phylogenies of large (1000-5000
tips), medium (450-650 tips), and small (150-250 tips)
sizes. As expected, SecSSE performed best with larger
trees and those with more complete sampling (Fig. 2;
Supplementary Table S1). Correct model selection was
reduced in smaller phylogenetic trees, and under low
SFs across all phylogeny sizes. For large trees, the false
positive rate was ~ 6.5% when the SF > 60, and increased
to 17% false positives rate at SF 40 (Supplementary Table
S1, set 10; Fig 2). Medium sized trees had false positive
rates of ~ 14.5% when SF > 80, this rate became > 22% at
SF 40. Small trees had a higher false positive rate of 20%
at SF 100, this decreased to 16% at SF 40, however, the
rates of false negatives increased dramatically: from 9%

at SF 100, to 55% at SF 40 (Supplementary Table S1; Fig
2). In contrast, false negatives were negligible (< 5%) for
large and medium sized trees when the SF was > 60%
(Fig. 2 and Supplementary Table S1). Results were very
similar for trees with higher extinction rates (Fig.2 and
Supplementary Table S3).

Akaike weights were higher in correctly selected
models compared to incorrectly selected models (Fig.
3); the difference was most pronounced in large trees,
and less so in small trees. Mean Akaike weight values
for correctly and incorrectly selected models were more
similar at lower SFs (Fig. 3). The ECTD model was
heavily penalized in the AICc analysis due to too many
free parameters (11 in ECTD compared to 5 in ETD) and
as such was never selected as the best model, even with
ECTD simulated phylogenetic trees (Supplementary
Table S4). With so many variables in the ECTD model,
the parameter space becomes too wide, resulting in
some model runs being incomplete even after 10 opti-
mization cycles.

Tree imbalance, as determined via Sackin index, did
not affect correct model selection for complete or ran-
domly trimmed phylogenies The random sampling
procedure removed tree tips randomly and conse-
quently transition events were also removed randomly
as we found that number of transitions out of a given
state were not different than transitions going into that
state (e.g., 1 -> 2 =2->1). Moreover, the number of tran-
sitions lost across the examined trait were similar than
in the concealed trait (Supplementary Fig. S3).

Parameter estimation was more accurate and precise
at higher SFs, whereas variation in parameter estimates
increased with decreasing SF (Fig. 4). Small trees had the
largest variation in their parameter estimates, while large
trees had the smallest variation (Fig. 4). The only excep-
tion was the net diversification rates of CTD generated
trees, which showed little difference in parameter estimate
variation across tree size (Fig. 4). In most cases, large trees
at SF > 40 had less variation in parameter estimates com-
pared to medium sized trees at SF 100 (Fig. 4). Extinction
rates for phylogenies generated with low extinction (4 =
0.001) were generally over-estimated (e.g., for medium
trees at SF 100, mean = 0.0284 + 0.0371; median = 0.0111),
whereas in the regular extinction sets (1 = 0.05), extinction
rates were marginally under-estimated (e.g., for medium
trees at SF 100, mean = 0.0442 + 0.0418; median = 0.0384).
There were occasional high outliers for the transition rate
estimates; this occurred with ETD, CTD and CR generated
trees, but only affected medium sized trees at SF 20 and
small trees at SF 60 or lower (Fig. 4).
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FiGure 2. False positives (A) and false negatives (B) from all correctly specified sampling fraction sets, including randomly trimmed large,
medium, and small trees, as well as bias trimmed trees (medium B), and trees with different extinction rates (small HX and medium HX).

Effects of Sampling Bias When the Sampling Fraction is
Correctly Specified

Medium sized phylogenetic trees that were trimmed
randomly, or with taxonomic bias, were compared to
test the effects of sampling bias. Random sampling
led to better model performance than biased sampling
for both model selection and parameter estimation
(Supplementary Table S1, Figs. 2, and 4). Randomly
trimmed trees had lower rates of false negatives than
biased trimmed trees (Supplementary Table S1). Biased
trimmed trees had a lower rate of false positives com-
pared to randomly trimmed trees at SF 80, but at SF
60 this was reversed (Supplementary Table S1). At SF
20, the percentage of false positives was considerably
higher for biased trimmed trees compared to randomly
trimmed trees (Supplementary Table S1). In biased
trimmed sets, most false positives came from an errone-
ous ETDselection of a CR generated tree (Supplementary
Table S1). In contrast, for randomly trimmed trees, most
false positives came from an erroneous ETD selection
of a CTD generated tree (Supplementary Table S1). Net
diversification rate estimates were considerably more
accurate in randomly sampled trees (Fig. 5). For biased
trimmed trees, as SF decreased, net diversification rate

estimates became more inaccurate (Fig. 5). Figure 5
shows that, even though the rate estimates are not accu-
rate, the model is able to detect differences across the
three states and accommodates the rates of net diversi-
fication to maximize this difference.

Effects of Mis-specifying the Sampling Fraction

Mis-specifying the SF by +20% (of the total number
of tips) reduced the accuracy of model selection (Fig. 6)
and parameter estimates (Fig. 5). Random and biased
sampled phylogenetic trees were affected by mis-speci-
fication of the SF in a similar manner. Specifying the SF
as higher than its true value often caused an increase
in false positives (Fig. 6), while under-specifying the
sampling faction gave similar or slightly lower rates
of false positives compared to correctly specified SF
sets (Fig. 4; Supplementary Table S2). Similar to cor-
rectly specified SF sets, false negatives were negligible
(< 5%) when the true SF was > 60%, irrespective of the
degree of mis-specification; the only exception to this
was Set 6b, which had a much higher false negative rate
(Supplementary Table S2).

Mis-specifying the SF affected net diversification
rate estimates in some sets, most noticeably “bias
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€20z |udy gz uo Jasn uasplaqy Jo Ausianiun Aq 0608869/1L00PEAS/0IGSAS/SE0L 0L /10p/3]01B-8oUBAPE/OIqSAS/WO9 dNOdlWapeoe//:sdiy wol) papeojumoq



8 SYSTEMATIC BIOLOGY

B Under specified SF B Correctly specified SF

B  Qver specified SF 8  More over specified SF

NOLR| v |
o

" J‘{ 0 H ________ ; {

0.4

1

0.0

0.2
<
01

-0.2
-0.1

1.0

ND2,R

0.4

-

06 08
-
i-

0.2

<—
-
-, .
: B 10 1.2 ; : . ;
. | —aE—

60 80
Sampling Fraction (%)

gﬂ i ND1, B I l NDZ, B ND3,B
iiw L I 6

ol | o [LL L] LAY n
$31 Z = ML ASRA AR
§ i i i —t k i i — s 4 i i —t
& 40 60 80 100 40 100 40 60 80 100
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the SF was correctly specified or mis-specified. The horizontal line indicates the true parameter value. Plots include all generated trees for each
set, regardless of whether the generating model was selected as the best model or not.

ETD”, “random ETD” and “random CR” (Fig 5,
Supplementary Fig. S4). Values were over-estimated
when SF was specified as lower than its true value (i.e.,
the clade was larger than thought), and under-estimated
when SF was specified as higher than its true value (i.e.,
the clade was smaller than thought; Supplementary Fig.
S4). These effects were most noticeable at lower SFs.
Transition rate estimates were similar in correctly spec-
ified and mis-specified sets (Supplementary Fig. S4).
Top left panel in Figure 4 shows that even though net
diversification rate estimates were inaccurate when the
SF was mis-specified (i.e., boxplots with wide ranges),
particularly in small trees, there was still little overlap
between rate estimates for each trait state. This suggests
that the model was able to correctly detect which trait
state had a comparatively higher net diversification rate
and which trait state had a lower rate (i.e., the median
for estimates are roughly at the true value).

Specifying the Sampling Fraction as a Range

When using RevBayes, we found that the signal of
state-dependent diversification is correctly recovered
in all cases under both sampling methods when the
prior distribution of SF was narrow (Table 2). However,
when the uncertainty around the true completeness of
the dataset is higher and the prior distribution of SF is
wider, in 10% of cases the state-independent model was
wrongly selected as being the best performing. Even
though bayes factor did not point to ETD as the best
performing model in those datasets, we note that the

rate estimates taken from the MCMC posterior distri-
bution did include the true generating rates. These dis-
tributions have an important overlap which is related
to the failure to detect state-dependent diversification
(Supplementary Fig. S5).

DiscussioN

In this study, we have explored how incomplete sam-
pling of phylogenetic trees, and mis-specification of the
SF, can affect the ability of SSE models to detect trait
dependent diversification and estimate diversification
rates. We found that both taxonomic biased sampling
and mis-specifying the SF can severely decrease the
accuracy of parameter estimation. Sampling fraction
mis-specification had more minor effects on model
selection, with false positive rates only increasing when
the SF was over-specified. Taxonomic biased sampling
reduced the accuracy of parameter estimates, more so
at lower SFs, and sometimes increased the rates of false
positives and false negatives compared to random sam-
pling. When using biased sampled phylogenetic trees,
there is a greater risk of obtaining a false positive from
a neutrally diverging phylogeny. Smaller phylogenetic
trees and any sized phylogenetic trees under low true
SFs (< 60%) have higher rates of false positives, ren-
dering them less suitable for current SSE analyses.
Although SecSSE was the main method used in this
study, our results are relevant to other SSE methods
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TaBLE 2 Number of datasets that were incorrectly (column CTD) and correctly selected (column ETD) during RevBayes analysis using a

narrow and wide priors for SF

Prior Sampling CTD ETD

Narrow Random 0 50
Bias 0 47

Wide Random 8 42
Bias 1 49

Note: The table also includes two different methods of tree tip sampling.

that incorporate hidden traits. The CTD model used
is equivalent to the CID-3 model in HISSE (Beaulieu
and O’Meara 2016; Herrera-Alsina et al. 2019), mean-
ing our general findings are applicable to HISSE and its
relatives.

Effects of Tree Size

Model selection accuracy was severely reduced in
small phylogenies (150-250 tips) even at high SFs (i.e.,
nearly complete phylogenetic trees). This concurs

with previous work using BiSSE, which also showed
that small trees (fewer than 300 tips) are less suitable
for SSE modeling (Davis et al. 2013). This is because
the statistical power of SSE models partially depends
on the number of taxa in the phylogenetic tree (Davis
et al. 2013). Across all phylogenetic tree sizes, rates of
false positives and false negatives were elevated at
lower SFs. This is due to decreased sizes of phyloge-
netic trees and increased uncertainty in the models,
both of which come as a consequence of lower SFs.
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When interpreting parameter estimates from SSE
models, it is therefore important to consider phyloge-
netic tree size. Interestingly, large phylogenetic trees
(1000-5000 tips) under low SF (40%) had similar or
better parameter estimates than medium sized phy-
logenetic trees (450-650 tips) at high SFs (Fig. 4). This
suggests that it may be better to use a larger, but incom-
plete phylogeny, rather than a smaller more complete
sub-clade, to study the patterns of trait dependent
diversification. The larger (and more complete) the
phylogenetic tree, the more accurate the speciation and
transition rate estimates.

As in other SSE performance studies (Maddison et
al. 2007b; Beaulieu and O’Meara 2016), extinction rate
estimates were imprecise, due to the lack of informa-
tion about extinction in phylogenetic trees (Rabosky
2006). In contrast to some studies (e.g., Hohna et al.
2011), but in agreement with others (e.g., Beaulieu and
O’Meara, 2016), we found that some extinction rate
estimates tended to be over-estimated. Specifically, the
low extinction sets (4 = 0.001) tended to have elevated
extinction rate estimates. We believe this is due to the
extinction rate parameter being set so low, because in
the regular extinction rate sets (4 = 0.05), extinction rate
estimates were generally under-estimated. However,
there was a large amount of variation in all parameter
estimates. Previous work using BiSSE and simulated
phylogenies with 500 tips, showed that speciation rate
estimates remain accurate down to ~ 50% SF (Fitzjohn
et al. 2009). We concur with this finding and add that
speciation rate estimates for larger phylogenetic trees
(21000 tips in the complete in tree) could remain accu-
rate at slightly lower SFs (~ 40%), although accuracy
is improved with greater sampling. As suggested by
Beaulieu and O’Meara (2016), more accurate net diver-
sification rate estimates can be obtained from larger
phylogenetic trees, making it possible to distinguish
between trait states with smaller rate differences.
However, while larger trees are better suited to SSE
analyses in terms of model selection and parameter
estimation, the time and computational power required
for these analyses is high.

Tip Ratio Bias and Loss of Trait State Transitions

We found that datasets where the inference analysis
failed to select the right model have very similar struc-
ture in terms of transition type lost than those data-
sets where the analysis recovered the right generating
underlying process. However, it was often the same
phylogenetic trees that had incorrect model selection at
different SFs, suggesting that there may be something
inherent within these trees that made it more difficult
for the model to detect the correct diversification type.
The number of trait state transitions lost may have a
different impact on simulations with different param-
eter settings.

Further studies will need to use scenarios with asym-
metrical transition rates. Differences in transition rates
may be more important when there are trait biases, that

is when some trait states are more likely to be sampled
than others. Equally, trait biases are more prevalent
when transition rates are asymmetrical (Davis et al.
2013). For example, in the scenario where it is easy to
transition into a specialist state, but harder to transi-
tion out of the specialized state, this asymmetry could
lead to trait state biases with more tips in the special-
ized state, unless this specialized state also had a lower
speciation or higher extinction rate. It would be inter-
esting to test how loss of trait state transitions affects
SSE models when there are trait biases. Other future
work that could be beneficial to further understanding
how loss of trait state transitions from incomplete phy-
logenetic trees affect SSE models include: 1) exploring
transitions lost under different transition rate scenarios
such as low, medium, and high transition rates and 2)
asymmetrical transition rates and different speciation/
extinction rates.

Effects of Sampling Regime

Phylogenetic trees may suffer sampling bias due to
certain sub-clades containing greater numbers of rare
or undescribed species. In other cases, some species
may be deliberately removed from the clade. Overall,
if phylogenetic trees are incomplete, our results show
that is better for them to be randomly sampled rather
than sampled with taxonomic bias. At high SF (80%),
biased sampling represents a minor source of inaccu-
racy: parameter estimates were similar to those from
randomly sampled phylogenies, and rates of false pos-
itives were lower than in randomly sampled phylog-
enies. However, when sampling is less complete (SF
< 60%), parameter values became over-estimated in
biased sampled sets but remained accurate in randomly
sampled sets. As SF decreased, rates of false negatives
became higher in biased sampled sets compared to ran-
domly sampled sets. This means there is a greater risk
of erroneously rejecting trait dependent diversification
when a phylogeny is sampled with taxonomic bias.

Similarly to Fitzjohn et al. (2009), we found that ran-
domly trimmed CR generated trees maintained ~ 85%
correct model selection across all SFs. In contrast, we
found that biased trimmed CR generated trees led to
more false positives and to considerable reductions in
correct model selection at lower SFs. This means that
there is a greater risk of erroneously finding evidence
for trait dependent diversification from a biased sam-
pled phylogenetic tree. This may be due to sampling
method, as some sub-clades were heavily trimmed (to
simulate under-sampling), leading to longer branch
lengths, and in the CR model branching patterns are the
only information available to estimate diversification.

Currently, the only way to specify the SF in most SSE
methods is by trait state, so it is not always possible to
account for alternative sampling methods or taxonomic
biases. Clade specific SFs were previously enabled in
HiSSE but were removed as they caused mathemati-
cal errors (Beaulieu 2020); however, clade specific SFs
still exist in diversitree (FitzJohn 2012). RevBayes can
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also account for different sampling methods: uniform
(random), diversified, and empirical (clade specific)
sampling strategies can be accommodated (https://
revbayes.github.io/tutorials/divrate/sampling.html).
When it is not possible to sample clades completely, it is
recommended to assess the degree of bias in sampling
in SSE modeling. When clades are biased sampled and
< 60 % complete, extra caution is advised when inter-
preting the results of SSE models. It is also important
to bear in mind that parameter estimates will likely be
higher than their true value when trees are biased sam-
pled and have a low SF.

Effects of Mis-specifying the Sampling Fraction

It can be difficult to accurately set the SF of empir-
ical phylogenetic trees as the actual number of extant
species is often unknown. Organisms which may be
particularly problematic in this regard include bacteria,
archaea, and fungi, as these groups contain many unde-
scribed species (Barns et al. 1994; Lambais et al. 2006;
Mueller et al. 2007; Brock et al. 2009; Opik et al. 2013;
Looney et al. 2016). Our findings indicate that it is not
acceptable to guess the SF if it is completely unknown:
inaccurate SF estimates have a high risk of false pos-
itives and inaccurate parameter estimates. Therefore,
SSE modeling is most suitable for incomplete recon-
structions when the SF is known with some degree of
accuracy. Sensitivity analysis to SF specification should
be performed to provide confidence to results when the
SF has been estimated.

Sampling fraction specifications of + 20% inaccuracy
led to inaccurate parameter estimates. In incompletely
sampled phylogenetic trees, the apparent number of
speciation and character change events is reduced
because tips/branches are missing from the tree. If
incomplete sampling is not accounted for, this can lead
to likelihoods favoring lower diversification and tran-
sition rate estimates (Fitzjohn et al. 2009). When the SF
is thought to be higher than it truly is (over-specified;
for example, there is a 60% complete phylogenetic tree,
but it is specified as 90% complete), not all tips and spe-
ciation events will be accounted for, leading to lower
speciation rate estimates. Conversely, when the SF is
thought to be lower than it truly is (under-specified;
for example, there is a 90% complete phylogenetic tree,
but it is specified as only 60% complete), the model will
account for more tips and speciation events than there
actually were, leading to higher diversification rate
estimates.

We suggest that parameter estimates are interpreted
cautiously when there is uncertainty around the SF
approximation. When considering net diversification,
the differences in rate estimates with SF mis-specifica-
tion were only present with biased sampled phyloge-
netic trees. Even with low levels of sampling, the model
correctly detects differences in diversification rates
across states so that it tries to maximize the difference
between trait 1 and 3 rates. Even though the estimated
difference in rates is quite close to the true one (0.4), the

overall estimates are inaccurate. This is more evident
under bias sampling (Fig. 5, bottom row) where net
diversification rate for trait 1 is under-estimated and at
the same time, for trait 3 is over-estimated. Interestingly,
specifying the correct SF does not lead to better rate esti-
mates under biased sampling. This is likely to be result
of 1) confounding extinction with missing branches due
to sampling, and 2) SSE models always assume that
non-sampled branches are randomly distributed. In the
presence of bias sampling, over-specifying SF yields to
better estimates. When diversification rate is separated
into rates of speciation and extinction, estimates are
highly affected by SF mis-specification. However, the
relative speciation rate estimates (i.e., which trait states
have the lowest and highest speciation rates) is robust
to changes in SF specification.

Due to unknown numbers of undescribed species
and taxonomic uncertainties, it may be more common
for researchers to over-specify the SF, thinking that they
have a greater proportion of the phylogeny sampled
than they actually do (Vieites et al. 2009; Pimm et al.
2014; Chan et al. 2018; Dickens et al. 2019). Our results
show that, in contrast, cautiously under-specifying the
SF may not be as bad as over-specifying it: false positive
rates were elevated when the SF was over-specified but
remained similar to (or even slightly lower than) cor-
rectly specified sets when the SF was under-specified.
With an 80% complete (randomly trimmed, medium
sized) phylogenetic tree, when the SF was correctly
specified (as 80%), the rate of false positives was 14.5%;
when the SF was under-specified as 60% complete, the
false positive rate was slightly lower (13.5%), but when
the SF was over-specified as 100% complete, false posi-
tives were higher (18%). As SF decreased, rates of false
negatives became higher in biased sampled sets com-
pared to randomly sampled sets. This means there is
a greater risk of erroneously rejecting trait dependent
diversification when a phylogeny is sampled with tax-
onomic bias. In SSE analyses, we recommend carrying
out sensitivity analysis of SF specification that spans, at
a minimum =# 20% of the estimated fraction, to deter-
mine if the results are robust to variation in the SF speci-
fication. The range of SFs used should reflect how much
uncertainty there is in the completeness of the tree.

Bayesian Analysis

One alternative method for dealing with an uncer-
tain SF utilizes Bayesian analyses with a hyperprior
placed on the SF. No empirical studies have thus far
used this method for dealing with SF uncertainty. More
commonly used methods to specify the SF in Bayesian
SSE studies are to specify the probability of sampling
species within the clade, based on the total number of
known species (tips) and the number of species sam-
pled (e.g., Wessinger et al. 2019; Varga et al. 2021), or
assuming that all extant species have been included in
the phylogeny (e.g., Condamine et al. 2018). Studies
using RevBayes and HiSSE that may have benefitted
from incorporating uncertain sampling include a study
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on weevils (Letsch et al. 2018) and a study on basid-
iomycete fungi (Varga et al. 2021), because these taxa
likely have undescribed species. The use of RevBayes
in SSE analysis is promising, especially when SF is not
well known. However, it is computationally slow which
compromises its applicability in large datasets.

Conclusions and Best Practices

Much progress has been made from the early days of
SSE models but work still needs to be done to make SSE
methods more robust to the sampling issues explored
here. Areas which require further attention include
dealing with different types of sampling, uncertainty in
tree topology, exploring how loss of trait state transi-
tions affect SSE models, and developing robust meth-
ods for confident analyses of smaller phylogenetic trees.
Additionally, a more thorough exploration of the effi-
cacy of using a SF prior within a Bayesian framework is
needed. Most empirical studies will to some extent vio-
late the assumption that sampling is uniform and ran-
dom across the phylogeny. It would be highly desirable
for SSE methods to be able to account for taxonomic
bias. One possibility which could provide more infor-
mation to the model and decrease uncertainty around
the SF, could be to allow for SF specification both by
trait state and by clades at the same time; however, this
would be challenging to develop (for birth-death pro-
cess see Hohna et al. 2011).

This work has helped to inform how much error in SF
estimates is acceptable, enabling confident SSE model-
ing of phylogenies where the SF can be reasonably esti-
mated. To conclude, we provide suggestions for best
practices when using SSE methods on incompletely
sampled phylogenetic trees.

e It may be better to use a larger but somewhat
incomplete phylogeny, rather than a smaller but
more complete subclade. Larger (> 450 tips) and
more complete (> 60% SF) phylogenetic trees are
most suitable for SSE analyses, but tree size is gen-
erally more important than completeness.

¢ Taxonomic biases in sampling can be problematic
when phylogenetic trees are < 80% complete. We
recommend assessing the degree of bias in sam-
pling, as there are greater risks of false positives
and inaccurate parameter estimates when trees
are < 60% complete and have been sampled with
taxonomic bias. If possible, additional sampling
of missing tips is advised, to reduce sampling bias
and increase the sampling faction of the phylog-
eny: increased taxon sampling remains one of the
best methods to increase accuracy of inferences
drawn from phylogenetic trees (Heath et al. 2008).
Inclusion of tips with uncertain trait states is pos-
sible in some packages (e.g., SecSSE), and is one
possible way to increase the SF.

e For SSE methods, we do not recommend exclud-
ing tips from phylogenetic trees, for example
because of regional sampling, as this lowers the

SE, increases uncertainty in the model, and may
increase sampling bias.

* Mis-specification of SF can reduce correct model
selection and leads to inaccuracies in parameter esti-
mates. We advise that SSE modeling is most suitable
for incomplete phylogenies when the number of
extant species in the clade is known with some accu-
racy. It is worth conducting a thorough examination
to estimate the SF as precisely as possible. We sug-
gest two methods for dealing with uncertainty in the
SE: 1) using the ML approach, sensitivity analyses
should be performed across an appropriate range of
SFs (at least + 20% of the estimated SF), in order to
confirm that results are robust to variation in SF spec-
ification; 2) using Bayesian analyses of SSE models
in order to specify a range of possible SFs as a prior.
These methods are not mutually exclusive, and the
most confident results may be obtained by imple-
menting both approaches.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad. wwpzgmsijp.
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