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Abstract

The distribution of fitness effects is a key property in evolutionary genetics as it has implications for several evolutionary phenomena 
including the evolution of sex and mating systems, the rate of adaptive evolution, and the prevalence of deleterious mutations. 
Despite the distribution of fitness effects being extensively studied, the effects of strongly deleterious mutations are difficult to infer since 
such mutations are unlikely to be present in a sample of haplotypes, so genetic data may contain very little information about them. 
Recent work has attempted to correct for this issue by expanding the classic gamma-distributed model to explicitly account for strongly 
deleterious mutations. Here, we use simulations to investigate one such method, adding a parameter (plth) to capture the proportion of 
strongly deleterious mutations. We show that plth can improve the model fit when applied to individual species but underestimates the 
true proportion of strongly deleterious mutations. The parameter can also artificially maximize the likelihood when used to jointly infer a 
distribution of fitness effects from multiple species. As plth and related parameters are used in current inference algorithms, our results 
are relevant with respect to avoiding model artifacts and improving future tools for inferring the distribution of fitness effects.
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Introduction
The distribution of fitness effects (DFE) among new mutations has 
long been recognized as having a fundamental importance in evo
lutionary genetics since the shape of this distribution affects 
many evolutionary phenomena. For example, the DFE governs 
the rate of adaptive evolution (Fisher 1930; Schultz and Lynch 
1997; Spigler et al. 2017) and the frequency (and hence prevalence) 
of mutations with different effect sizes (Haldane 1937; Agrawal 
and Whitlock 2012) and has important implication for phenom
ena such as inbreeding avoidance, the evolution of sex, and mat
ing system evolution (Kondrashov 1985; Hartfield and Keightley 
2012; Hedrick and Garcia-Dorado 2016). Because of this, the DFE 
has been extensively studied over several decades (for a review, 
see Eyre-Walker and Keightley 2007). Many important results on 
the DFE have emerged from this large body of literature; the DFE 
differs among species (Charlesworth and Eyre-Walker 2006; 
Castellano et al. 2018), and the shape depends on how well- 
adapted the population is and its effective population size Ne 

(Eyre-Walker 2002; Lynch and Conery 2003; Goldstein 2013; 
Huber et al. 2017). While the full DFE is probably complex and 
multimodal, parts of the DFE of deleterious mutations can be 
modeled as a leptokurtic gamma distribution (Loewe and 
Charlesworth 2006; Silander et al. 2007) or by a series of discrete 
bins showing the proportions of mutations with different effects 
(Keightley and Eyre-Walker 2010).

Most of these results on the DFE have been obtained through 
two experimental techniques: mutation-inducing experiments 
and mutation accumulation experiments. In the former, muta
tions are induced, and their effects are evaluated by comparing 
different strains of a model organism using some trait, such as fer
tility or growth rate, as a fitness proxy (Sanjuán et al. 2004). In the 
latter and more common approach, an ancestral strain is split into 
small, separate populations which are kept for many generations 
under favorable conditions that impose very little selection 
(Ohnishi 1977; Halligan and Keightley 2009; Böndel et al. 2019). 
The effects of accumulated mutations can then be evaluated by 
comparing the fitness proxy of the population strains with that 
of the ancestral strain. The DFE can also be estimated by sampling 
and comparing haplotypes from individuals in the wild (Dobzhansky 
and Wright 1941; Crow and Temin 1964; Eyre-Walker et al. 2006; 
Castellano et al. 2018). Data from the sampled haplotypes are often 
analyzed in the form of a site frequency spectrum (SFS) which de
scribes the frequency with which different alleles segregate in the 
sampled population (Fisher 1931; Wright 1938; Evans et al. 2007).

One major challenge in DFE inference is measuring the occur
rence of strongly deleterious mutations. Assuming deleterious 
alleles are not completely recessive, their mutation–selection fre
quency is generally proportional to 1/s, where s is the mutation’s 
selection coefficient (Wright 1937; Crow and Kimura 1970), and 
mutations are less likely to be present in a sample of haplotypes 
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as they become more strongly deleterious due to the large select
ive disadvantage they entail. In other words, the probability distri
bution of mutational effects in segregating mutations only will 
almost certainly be different from the probability distribution of 
all mutations, since strongly deleterious mutations (with 
s ≫ 1/2Ne) have a tiny probability of showing up in a population 
sample (Crow and Kimura 1970; Reich and Lander 2001; Rice 
et al. 2015). This emphasizes the importance of distinguishing be
tween an observed DFE, consisting of alleles segregating in the gene 
pool of a population at a given timepoint, and an input DFE that re
presents the actual probability distribution of mutational effects 
as they arise by mutation and are added to the gene pool.

Much work has been done on inferring what proportion of the 
DFE consists of strongly deleterious mutations; a study on human 
polymorphism data puts the estimate at <15% (Eyre-Walker et al. 
2006). However, this proportion differs greatly among different 
branches of the tree of life. The proportion of lethal mutations 
was found to be approximately 40% in the vesicular stomatitis virus 
(Sanjuán et al. 2004) and even above 70% in Drosophila (Keightley and 
Eyre-Walker 2007). However, 2 mutations which are both described 
as strongly deleterious can still be orders of magnitude different in 
effect as mutations with, for example, s = 102/Ne and s = 105/Ne 

both satisfy s ≫ 1/2Ne. As a result, modern DFE inference algo
rithms such as DFE-alpha (Eyre-Walker and Keightley 2007; 
Keightley et al. 2016) and polyDFE (Tataru et al. 2017; Tataru and 
Bataillon 2020) which all work by analyzing a SFS may struggle to 
describe the extent to which many different strongly deleterious 
mutations arise. This is partly because very strongly deleterious 
mutations are unlikely to show up in a genome sample. However, 
the number of nonsegregating sites in a genome sample (some of 
which are presumed to be under strong purifying selection) may 
provide information about the rate at which strongly deleterious 
mutations occur. In any case, it is hard to differentiate the effect 
sizes of mutations once the effect size is large, since such a muta
tion will have essentially no probability of appearing in a genome 
sample (Galtier and Rousselle 2020).

A few studies have attempted to account for these strongly 
deleterious mutations by fitting a DFE under the assumption 
that a certain fraction of mutations are so strongly deleterious 
that they will remain absent from a haplotype sample, regardless 
of Ne (Eyre-Walker et al. 2006; Boyko et al. 2008; Elyashiv et al. 2010; 
Kim et al. 2017; Galtier and Rousselle 2020). In particular, Galtier 
and Rousselle (2020) used DFE methods to infer the mean Nes of 
mutations among species, thereby obtaining estimate of the dif
ference in Ne between different species under the assumption 
that species shared a common, gamma-distributed DFE. The field 
of DFE research has often parameterized gamma distributions 
through the usage of a shape parameter, often denoted β, and a 
mean value (Keightley and Eyre-Walker 2007). The optimal shape 
parameter of the gamma-distributed DFE varied greatly among 
species, but a good fit for similar shape parameters was obtained 
when a fraction of strongly selected mutations, with an effect size 
making them deleterious to the point of being “essentially inde
pendent of Ne,” was included in the SFSs. Here, Ne-independent 
mutations were defined as those deleterious enough so that their 
probability of showing up in a haplotype sample is essentially zero 
regardless of Ne. Galtier and Rousselle (2020) implemented this 
approach by assuming that a proportion of 0 ≤ plth ≤ 1 mutations 
were either lethal or so strongly selected that they never appeared 
in a SFS; each entry in the selected SFS was subsequently scaled by 
1 − plth. The method yielded a high model likelihood but produced 
surprising results such that estimates of the proportion of strong
ly deleterious mutations (including lethal and nearly lethal 

mutations) in Drosophila being over 50%, which is well above an or
der of magnitude larger than previous and frequently used esti
mates (lethal or very strongly deleterious mutations are 
estimated to occur at a rate of approx. 10% of the rate of mildly 
deleterious mutations; Simmons and Crow 1977; Crow and 
Simmons 1983, also see Keightley and Eyre-Walker 2007). While 
this method provides a way of accounting for strongly deleterious 
mutations that will be absent from genomic data, the properties 
and accuracies of this approach have yet to be fully investigated.

Here, we investigate to what extent explicitly accounting for 
strongly deleterious mutations in a gamma-distributed DFE mod
el improves the accuracy of inference when inferring an input DFE 
from simulated and genomic data. We do this by formulating a 
genetically explicit individual-based Wright–Fisher model to 
simulate steady-state observed DFEs under different strengths 
of selective effects, then infer the DFEs using the state-of-the-art 
DFE inference software polyDFE (Tataru et al. 2017). We show 
that explicitly accounting for a proportion of strongly deleterious 
mutations can increase the accuracy of inference when inferring 
the DFE of a single population. However, we also demonstrate that 
including this parameter artificially increases the inferred propor
tion of strongly deleterious mutations when considering SFSs 
from multiple different populations. We further show that the 
plth resulting in the best model fit is not equivalent to the true pro
portion of lethal or strongly deleterious mutations in both cases.

Methods
To simulate the observed DFE of a population, we model a diploid, 
sexually reproducing Wright–Fisher population with discrete genera
tions and a default population size of N = 500. Individuals have two 
different chromosomes, each with two homologs. Both chromosomes 
have a map length of [0, R] where we used R = 10 such that any real 
number r with 0 ≤ r ≤ R denotes a unique site on the chromosome; 
the potential number of sites is therefore effectively infinite (e.g. 
Roze and Rousset 2009). In the first chromosome, mutations are non
neutral, although mutations that are effectively neutral can occur, 
while in the second chromosome, mutations are fully neutral. The 
sites on the neutral and nonneutral chromosome are used to calculate 
a neutral and nonneutral SFS, respectively. These are then used as in
put datasets for the DFE inference software (see below).

Individuals go through a life cycle similar to that of SFS_CODE 
(Hernandez 2008). Specifically, individuals are sampled with a 
probability relative to their fitness standardized by the mean fit
ness of their sex. The fitness of the ith individual, wi, is defined as

wi =
􏽙Nhet

x=1

(1 − sx/2)
􏽙Nhom

y=1

(1 − sy) (1) 

Thus, fitness is the product of the effects of all Nhet heterozygous 
mutations and all Nhom homozygous mutations, thereby using a 
model of selection where individual effects are additive within a 
locus (i.e. h = 1/2 for all mutations) and multiplicative between 
loci. Selection coefficients s are sampled from a gamma distribu
tion (see parameterization below). Parents each provide 1 of their 
2 homologs to their offspring after a number of recombination 
events, sampled from a Poisson distribution with mean R = 10, 
has occurred. Mutations then occur in offspring, and the number 
of mutations is sampled from a Poisson distribution with a mean 
of U = 1.0 mutations per chromosome per generation, yielding a 
per genome mutation rate similar to that of some eukaryotes 
(Haag-Liautard et al. 2007). The number of neutral and nonneutral 
mutations is sampled independently with the same mean. The 
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selection coefficients of new mutations are sampled from a gam
ma distribution with a mean of S = 2Nes and a shape parameter of 
β. Sampled values of S are rescaled to s by calculating s = S/2Ne 

using the estimated Ne for that parameter set (see below). 
Offspring are created by randomly sampling a mother and a father 
for each offspring, until N viable (w > 0) offspring have been pro
duced with a constant 1:1 sex ratio. Once N viable offspring have 
been formed, these will constitute the new parent generation.

To estimate Ne, we added a single, neutral, linked locus to the 
center of the nonneutral chromosome and mutated the locus at 
a Poisson-distributed rate with a mean of 1 by adding a random 
value sampled from N(0, 1) to the allelic value, thus having the lo
cus satisfy Vm = 1, which is the new genetic variance from muta
tion appearing per generation (Lynch and Hill 1986; Barton and 
Turelli 1989; Keightley and Otto 2006). The Ne of the population 
was defined as the mean (over 50 replicates) steady-state variance 
at the neutral linked locus after a burn-in period of 10N genera
tions. Without selection, the expected variance at this locus 
is NVM = NeVM (Lynch and Hill 1986), and this was confirmed 
by simulation (Supplementary Information 1, Supplementary 
Figure 1). Mutational effects were sampled as 2Nes (Hernandez 
2008), then rescaled by dividing the sampled value with 2Ne before 
applying it in Eq. 1. To accomplish this, Ne was estimated before 
the Wright–Fisher simulation by plotting a standard curve of esti
mated steady-state Ne against an assumed Ne (the value used to 
rescale 2Nes to s) for a given gamma distribution of selective ef
fects. This allowed us to know the approximate steady-state Ne 

which would emerge in our Wright–Fisher simulation before we 
used these to simulate data for SFS construction (Supplementary 
Information 2, Supplementary Figure 2).

Data for calculating SFSs were outputted from the simulation 
after a burn-in period of 10N generations, after which the full 
neutral and selected genomes of 10 random individuals (i.e. 20 
haplotypes) where outputted and used to calculated 1 neutral 
and 1 selected unfolded SFS. Unfolded SFSs were used throughout.

To infer the mean scaled selection coefficients of mutations 
S = 2Nes and the shape parameter β, we used polyDFE v1.11 
(Tataru et al. 2017; Tataru and Bataillon 2020). To determine whether 
these parameters could be obtained using our simulation setup, we 
estimated them from SFSs calculated from simulated populations 
with the same S and β combinations that Tataru et al. (2017) used 
to test the inference of purely deleterious DFEs (see their Fig. 4). 
We found that polyDFE could accurately infer them from our simu
lations (Supplementary Information 3, Supplementary Figure 3) For 
each single-species polyDFE run, an input file with 50 neutral and 50 
selected SFS was used, wherein each pair of neutral and selected SFS 
was calculated from the basis of a single replicate of a Wright–Fisher 
simulation (hence 50 Wright–Fisher simulations per polyDFE run set 
for single-species DFE). The assumed sequence lengths were 20,000 
base pairs. For the multispecies polyDFE runs, an input file with 20 
neutral and 20 selected SFSs from 3 different species was used (60 
SFSs). The polyDFE command lines and init-files used are available 
in Supplementary Information 4.

The concept of plth was previously used when fitting a single DFE 
model to a collection of SFSs obtained from multiple different species 
(Galtier and Rousselle 2020). To examine the efficacy and validity of plth 

for fitting multispecies DFEs, we simulated various gamma-distributed 
DFEs in different populations, calculated output SFSs for each popula
tion, and inferred DFEs for datasets containing SFSs from multiple dif
ferent populations. We repeated this analysis with DFEs inferred from 
genomic data from different species (Chen et al. 2017).

For single-species inferences, we first used the model 
described to simulate populations with S = 2Nes in the range of 

[1,000, 10,000] with increments of 1, 000 and β = 0.4. Each simula
tion was replicated 50 times (500 replicates in total). For each 
simulation set, we then inferred S and β using polyDFE under 10 
different plth values in the range [0.0, 0.9] with increments of 0.1. 
The parameter plth was implemented, following Galtier and 
Rousselle (2020), by setting an initial plth value and scaling each 
entry of the selected SFS by 1 − plth. For each plth value, 10 
polyDFE runs were performed (1,000 polyDFE runs in total) since 
the performance of polyDFE is affected by the initial S value 
used. For each combination of plth value and simulation set, half 
of the polyDFE runs were run using randomly sampled initial va
lues of the estimated parameters. These values were sampled 
from a uniform real distribution U(1,000, 10,000) for S and 
U(0.2, 0.8) for β. For the other half of the polyDFE runs, the true va
lues of S and β were used as the initial value of the estimated para
meters (following Tataru et al. 2017, Supplementary file 1, page 3). 
To thoroughly test how plth affects the overall DFE inference under 
weaker selection, we also studied the effect of plth on S and β infer
ence given different combinations of S = 50, 250, 2,500 and 
β = 0.15, 0.40, 0.65. For the simulation sets with S = 2Nes in the 
range of [1,000, 10,000] with increments of 1,000 and β = 0.4, we 
used standard results from probability theory to calculate the 
true proportion of lethal mutations resulting from these distribu
tions (Appendix A) and compared it to the value of plth under 
which the highest accuracy of inference was found.

We also studied the effects of plth on inference of multispecies 
DFEs from more than 1 species and in particular if β is fixed be
tween species. This was studied with both arbitrarily defined 
weakly deleterious DFEs (which were used because they con
tained hardly any strongly deleterious mutations), and DFEs in
ferred from genomic data (Chen et al. 2017, 2020). First, we 
simulated 3 Wright–Fisher populations with different DFEs 
with the shape parameters β and means S of β = 0.15, S = 5, 
β = 0.40, S = 20, and β = 0.65, S = 40. We then constructed 
polyDFE input files using 20 neutral and selected SFSs from each 
population. Using polyDFE, S and β were estimated from this input 
file under 4 different plth values using similar procedure of replica
tion and definition of initial values as for the single-species case. 
Second, using DFEs estimated from genomic data, we ran the 
same analysis by simulating the DFEs estimated for populations 
of Arabidopsis lyrata, Capsella grandiflora, and Zea mays using the 
data of Chen et al. (2017). We compared the likelihood of the esti
mated parameters under 4 different plth values, so that they cover 
cases when the initial values were correctly defined and when 
these were purposely highly inaccurate. Following Galtier and 
Rousselle (2020), we also studied the effect of plth on S inference 
from these DFEs given different fixed values of β (as opposed to 
jointly estimated). Confidence intervals of estimates shown in 
plots were calculated as x̅ ± Z · σ/

��
n
√

with x̅ being the mean value, 
n being the sample size, and Z being the 97.5 percentile value of 
the t-distribution given n − 1 degrees of freedom.

Results
Analytical results
To illustrate the utility of including a plth parameter in DFE infer
ence and determine where it might be most useful, we first pre
sent analytical results demonstrating which deleterious alleles 
are unlikely to be present in a population sample. Assume that 
mutations are introduced at a rate θ = 4NeμL for Ne the effective 
population size, μ the per-site mutation probability per gener
ation, and L the number of sites where selected sites are likely to 
arise [e.g. nonsynonymous sites (Galtier 2016)]. A focal mutation 
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has a scaled selection coefficient S = 2Nes as a heterozygote and is 
in the population at a frequency x. If we sample n haploid gen
omes, then the expected probability that this mutation is present 
in i of n samples is (Tataru et al. 2017, Equation 1):

E(P = i|θ, S) = θ ∫
1

0
B(i, n, x)H(S, x) dx (2) 

Where B indicates the binomial distribution of sampling i selected 
alleles from n genomes and H the expected time that the allele 
spends between frequencies x and x + δx (Wright 1938):

H =
1 − eS(1−x)

x(1 − x)(1 − eS)
(3) 

Note there are a few differences between Eq. 3 and the version in 
Tataru et al. (2017). Eq. 2 scales s by 2Ne whereas Tataru et al. (2017)
use 4Ne scaling, due to the different manner in which heterozy
gote fitness is calculated. That is, we consider mutations to be 
additive with a dominance coefficient of h = 1/2, such that the fit
ness effect of a single heterozygous and homozygous mutation is 
1 − sh and 1 − s, respectively. S is also multiplied by −1 in Eq. 3, so a 
positive value denotes a deleterious mutation with that selection 
magnitude.

Using Poisson random field theory (Sawyer and Hartl 1992; 
Sethupathy and Hannenhalli 2008), the probability of observing 
a certain number of sites with i selected alleles is Poisson- 
distributed with mean E(P = i) (Eq. 2). Hence, the probability 

that no sites will have i selected alleles is e−E(P=i), and the 
probability that no copies of the selected allele are present equals 
􏽑n−1

i=1 e−E(P=i) = e−
􏽐n−1

i=1
E(P=i). The repository with the code used for all 

simulations also contains a Mathematica notebook to perform 
these calculations (see Data availability).

Figure 1 outlines the probability that no selected allele will be 
present in a sample of genomes, for different sample sizes and 
mutation rates. We see that if the mutation rate is low (θ = 0.1), 
then even weakly deleterious mutations (S > 10) are unlikely to 

be present. For θ = 1, while a small sample is also unlikely to con
tain strongly deleterious mutations (S > 100), a large sample size 
of 100 is likely to capture some strongly deleterious mutations 
with 100 < S < 1,000. A very large sample can capture even more 
strongly deleterious mutations if the mutation rate is high 
(θ = 10). However, under all cases considered, it becomes unlikely 
to sample extremely deleterious mutations (S approaching 5,000), 
even with large sample sizes and mutation rates. Overall, for real
istic sample sizes and mutation rates, once S exceeds 100, it be
comes difficult to capture strongly deleterious mutations in a 
population sample, and it is in this parameter space that plth 

might be useful in capturing the proportion of these deleterious 
mutations. A plth-type parameter might also be necessary to cal
culate the fraction of all deleterious variants if the population mu
tation rate is very low.

Model fitting for single-species DFEs
In simulations with a high S, the accuracy of inference of S and β 
was affected by plth (Fig. 2, a and b), and the inaccuracy of infer
ence in 4/10 of all cases was lowest under a nonzero value of plth 

(Fig. 2, c and d). In these cases, the inaccuracy of inference (mea
sured as the difference between log2(estimate/simulation) and 0 
such that log2(estimate/simulation) = 0 is maximum accuracy of 
inference) decreased by a value between 0.13 and 0.99. In terms 
of the actual estimates of S, this means that in the 4 cases where 
plth improved the accuracy of inference, S was estimated 3–49% 
(depending on simulation set) more accurately than in the corre
sponding set where plth = 0.0. In general, S inference becomes 
more inaccurate as plth increases; however, the accuracy of infer
ence of β is less affected unless plth is very high (Fig. 2). At low mu
tation rates, high accuracy of inference can be achieved under a 
high plth, although this comes at the expense of the accuracy of in
ference of β (see Supplementary Information 7).

Under low values of S and varying values of β, nonzero values of 
plth generally increased the inaccuracy of inference, highlighting 

Fig. 1. The probability that a deleterious mutation with scaled selection coefficient S will not be present in a sample of n genomes. Results are plotted for 
different n, θ values as denoted by the legend. Note that we do not plot S < 10 since calculations do not assume neutrality and break down as S approaches 
0. Strongly deleterious mutations are less likely to end up in a sample of haplotypes, making it difficult to differentiate the effects sizes by analyzing site 
frequency spectra.
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that plth only improves the accuracy of inference when S is high 
(Fig. 3).

By calculating the true proportion of lethals (Appendix A), 
which can be used as a lower bound for the proportion of strongly 
deleterious mutations, we found that the plth value resulting in the 
highest accuracy of inference (Figs. 2 and 3) were not equivalent to 
the true proportion of lethals (Fig. 4), with the true proportions 
being much higher than those inferred using plth.

Model fitting for multispecies DFEs
We simulated weakly deleterious DFEs for multiple species 
that had essentially 0 probability of yielding lethal mutations 
(Supplementary Information 5, Supplementary Figure 4). Despite 
this setup, we found that the likelihood of the estimated para
meters could be artificially maximized when assuming a high plth 

value, when inferring a joint set of DFE parameters from SFSs 
across different species (Fig. 5a). When a DFE model is fitted to 
SFSs from multiple species, the model likelihood is artificially max
imized because a nonzero value of plth pushes the entries of the dif
ferent SFSs closer together by making them numerically similar 
(Fig. 6). That is, species with very different SFSs will seem to have 
more similar SFSs under a high value of plth, because plth will result 
in the entries of these different SFSs all being closer to 0. Because of 
this, fitting a single DFE model to joint SFS data yields a better mod
el likelihood once plth is applied. Thus, we found that plth can 

erroneously result in a high likelihood of a model despite essential
ly no strongly deleterious mutations being present.

plth can also artificially maximize the likelihood of DFE models 
when simulating DFEs estimated from genomic data (Fig. 5b). 
Whether the likelihood of the DFE model levels off or keeps in
creasing with plth depends on the sampled initial values for the 
polyDFE runs. For high plth values, the initial values sampled for 
each polyDFE run becomes increasingly important. This seems 
to happen as the likelihood of the inferred DFE model drops sub
stantially if the initial S fed into polyDFE was low, and the SFSs 
are modified by a high plth value resulting in a seemingly very dele
terious selected SFS. Because of this effect, 95% confidence inter
vals on the mean likelihood increase as plth increases (Fig. 5). The 
parameter plth can also artificially maximize the likelihood of a 
DFE model in cases where β is fixed and S is inferred, similar to 
the approach used by Galtier and Rousselle (2020) (Fig. 7).

Exploring wider parameter space
The effect of plth on the accuracy of inference was also tested un
der larger population sizes and a larger number of sampled haplo
types (Supplementary Information 6). While plth was less useful 
for correcting the underestimation of the mean S when a larger 
population size was used, the results remained qualitatively simi
lar such that plth had a more positive effect on the accuracy of in
ference as S was increased. The ability of plth to artificially 

Fig. 2. Mean inaccuracy of inference for a) S and b) β under the assumption of different values of plth for different Wright–Fisher simulation sets (differing 
in the simulation S, ranging from 1,000 to 10,000). Each point shows the mean value of 10 polyDFE replicates. Bars denote 95% confidence intervals (if they 
are not visible, then they lie within the point). For each simulation set (differing in S; color), bottom panels show the subset that had the highest accuracy 
of inference of S. For these subsets, the inaccuracy of inference for c) S and d) β is shown. A value of 0 is equivalent to perfect accuracy of inference. The 
results show that for each simulation set (these differ in their value of S), the best accuracy of inference (i.e. lowest inaccuracy of inference) is found when 
plth is either 0 or very low (plth = 0.1, plth = 0.2) when a DFE model is fitted to SFS data from a single species.

A. P. Charmouh et al. | 5
D

ow
nloaded from

 https://academ
ic.oup.com

/g3journal/article/13/9/jkad140/7202419 by U
niversity of Aberdeen user on 28 N

ovem
ber 2024

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad140#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad140#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad140#supplementary-data


maximize the likelihood of a model fitted to SFS data from mul
tiple species was also tested under larger simulated population 
and sample size, and this yielded a result that was qualitatively 
the same (Supplementary Information 6, Supplementary Figures 
5 and 6). That is, plth will also artificially maximize the likelihood 

of a DFE model based on multiple species when these species 
have larger populations. This makes intuitive sense given the 
mechanism through which plth seems to cause the artificial maxi
mization of likelihood; that is, the entries of different SFSs will be
come numerically similar as a higher plth is used, regardless of the 
sample size.

We also investigated inference in a single species using a 5-fold 
lower mutation rate. Here, higher values of plth can result in the 
best accuracy of inference for S; however, this happens at the ex
pense of poor accuracy of inference of β (Supplementary 
Information 7).

Discussion
Improving the accuracy with which we can infer the DFE is im
portant since this is a fundamental parameter of evolutionary 
genetics with implications for many branches of biology. 
Constructing an accurate description of the DFE boils down to 
constructing a model which can describe a wide range of effect 
sizes of mutations at a broad range of frequencies and hence 
can be applied to many different species. This is not a trivial 
problem, because while several models consisting of parametric 
distributions have been suggested, including gamma, exponen
tial, and lognormal distributions, the evidence shows the DFE 
of deleterious mutations follows some complex and multimodal 
distribution rather than a simple parametric one (Nielsen and 
Yang 2003; Eyre-Walker and Keightley 2007; Kousathanas and 
Keightley 2013). Thus, fitting a single parametric distribution 
model to a deleterious DFE can result in a biased estimate, and 

Fig. 3. As Fig. 2, but instead using 9 simulation sets with different combinations of S and β (S = 50, 250, 2,500 and β = 0.15, 0.40, 0.65).

Fig. 4. The true proportion of strongly deleterious mutations as a function 
of S (same values as used in Fig. 2) given β = 0.40 and Ne = 500 (Appendix 
A). Red lines show the interval containing plth value which resulted in the 
highest accuracy of inference (Figs. 2 and 3). The results show that the 
lower bounds for true proportion of lethals for each simulation set 
(points) are higher than the plth which results in the best accuracy of 
inference (0.0–0.2, i.e. between the red lines).
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this bias is especially prone to affect the inferred proportion of 
strongly deleterious mutations (Kim et al. 2017). Our results illus
trate that once strongly deleterious mutations are present, ex
panding the typical gamma distribution model of a DFE to one 
which accounts for a proportion of strongly deleterious mutations 
(Galtier and Rousselle 2020) can in principle improve the accuracy 
of inference, although it can artificially increase the likelihood of 
the inferred parameters when a single DFE is fitted to data from 
different species or populations.

We show that when inferring a DFE from a single species, a 
model under which plth > 0 can sometimes yield the highest likeli
hood even when the DFE does not contain a fraction of plth strong
ly deleterious mutations. This result highlights that plth is not the 
true proportion of lethals and should not be viewed as such. 
Future developments might produce a more useful correcting fac
tor that accounts for underrepresentation of strongly deleterious 
mutations while being compatible with classic parametric distri
butions such as gamma distributions. This would likely involve 
first calculating how much underestimating might occur, assum
ing some gamma-distributed DFE, and part of answering this 
would be to calculate the mean effect size of mutations with 
2Nes > 2Ne.

Further, the classic notion of a model likelihood is not well- 
defined when using plth, since plth is used to multiply all entries of 
the SFSs by 1 − plth. This rescaling results in the data itself being 
modified and consequently 2 DFE models with differing values of 
plth will be models on different datasets. This means that the like
lihood of 2 different DFE models with different plth values cannot be 
compared in the same way. This explanation does not mean that 
there is a problem with the concept of model likelihood in general; 
rather, it instead means that model likelihood cannot be used for 

model selection in the same way when plth is used, since different 
plth models are effectively attempting to explain different datasets.

Given SFS data from a single species, our results illustrate that 
DFE inference performs better on strongly deleterious DFEs when 
entries in the input SFS are modified by some value plth to reflect 
the proportion of strongly deleterious mutations that will not 
end up in a haplotype sample. This is in line with the results of 
Fig. 4A in Tataru et al. (2017) showing that mutational effects are 
underestimated when the input DFE is strongly deleterious, indi
cating that strongly selected mutations are not fully detected or 
represented in the haplotype sample. This is one parameter space 
where including plth may help with improving the accuracy of in
ference, although the resulting plth values are unlikely to reflect 
the actual proportion of strongly deleterious mutations. This 
means that although including some value plth may improve the 
model likelihood, plth cannot reliably be used to infer the propor
tion of strongly deleterious mutations. A recent study wherein a 
DFE model was derived on completely different principles (by con
sidering gene regulatory networks and metabolic pathways) also 
concluded that no parametric distribution suffices to describe 
the DFE of strongly deleterious mutations and that a satisfactory 
model must involve some extra class of strongly deleterious mu
tation akin to plth (Brajesh et al. 2019). These findings suggest our 
conclusion has broad generality beyond the Wright–Fisher model. 
In practice, information about the optimal value of plth to use 
when fitting a DFE model to a particular species may eventually 
be determined a priori based on the species in question. For ex
ample, an application of Fisher’s geometric model (Fisher 1930) 
to DFE theory yields the prediction that as the complexity of an or
ganism increases, a larger proportion of the DFE should be strong
ly deleterious (Lourenço et al. 2011; Tenaillon 2014). This has been 
tested several times and found to be consistent with data by using 
the level of pleiotropy as a proxy for the complexity of an organism 
(Martin and Lenormand 2006; Huber et al. 2017).

It is well-known that the likelihood of an individual DFE model 
drops when fitted to multiple species (Huber et al. 2017; Galtier and 
Rousselle 2020), which highlights that the DFE differs among spe
cies (Eyre-Walker 2002; Lynch and Conery 2003). In this study, we 
also show that plth can artificially improve the likelihood of par
ameter estimates when a single DFE is fitted to multiple species. 
This result has several important implications. First, it illustrates 
the point that while the data strongly suggests the DFE of deleteri
ous mutations usually follows a gamma and lethal model, it can 
still result in a misleading description of the DFE when fitted to 
data from multiple species. Second, it shows that since plth con
sists of a modification of the data, we should bear this in mind 
when assessing the likelihood of a model; we find the likelihood 
of a DFE model is maximized under a high plth in cases where 
the true DFE is known to be very weakly deleterious and known 
to not contain a proportion of plth strongly deleterious mutations. 
Because of this, we can conclude that if the likelihood of a given 
DFE model for multiple species is maximized under the assump
tion of some plth > 0, this should not be considered evidence that 
the DFEs being modeled does indeed contain a proportion of plth 

strongly deleterious mutations. Third, our results offer an explan
ation of the mechanism by which this effect occurs, namely, that 
plth makes entries of different SFSs more numerically similar, 
thereby inflating the likelihood of the resulting DFE model. 
Several studies model DFEs as following a gamma and lethal 
model, or gamma and “point mass” model (Eyre-Walker et al. 
2006; Elyashiv et al. 2010), but when such models involve applying 
a correction factor to SFSs, they seem unsuitable for fitting a single 
DFE to data from a group of species.

Fig. 5. Mean likelihood with 95% confidence intervals returned by 
polyDFE for a multispecies DFE model against 10 plth values. β was 
inferred, and S was assumed fixed at a randomly sampled value. polyDFE 
runs were conducted on 20 neutral and selected SFSs from 3 different 
simulated DFEs. a) Model likelihood for inference based on simulated 
weakly deleterious DFEs with the shape parameters β and means S of 
β = 0.15, S = 5, β = 0.40, S = 20 and β = 0.65, S = 40 combined into 1 data 
input file. b) Model likelihood for inference based on the DFE of 3 
populations simulated parameterized with data from Chen et al. (2017)
using DFEs inferred for A. lyrata, C. grandiflora, and Z. mays. The results 
show that (1) model likelihood can be maximized under a high value of 
plth despite little or no strongly deleterious mutations being present in the 
DFE because plth makes different SFSs more similar and (2) this effect can 
also occur for DFE estimated from natural populations.

A. P. Charmouh et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/g3journal/article/13/9/jkad140/7202419 by U
niversity of Aberdeen user on 28 N

ovem
ber 2024



While our study is limited to purely deleterious DFEs, more 
work on improving the accuracy of inference for DFEs with bene
ficial mutations is also needed, since recent work shows that 
the occurrence of strongly beneficial mutations (much like strong
ly deleterious mutations) can make DFE inference inaccurate 

(Booker 2020). Even in the study of purely deleterious DFEs, atten
tion has almost exclusively been focused on the effects of SNPs 
(resulting from point mutations), but the DFE of INDELs (inser
tions and deletions) is understudied, and accounting for such mu
tations might require a slightly different modeling approach 
(Barton and Zeng 2018). As in our study, mutational effects are 
most often assumed to be additive; however, the average domin
ance coefficient of new mutations appears to be substantially low
er than h = 1/2 (Mukai et al. 1972; Simmons and Crow 1977; Lynch 
et al. 1999; Fernández et al. 2004; Spigler et al. 2017). While it is im
plicitly assumed that current DFE inference algorithms remains 
accurate when the assumption of additive dominance is violated, 
very little work has been done to test this assumption (but see 
Wade et al. 2022). Similarly, other “gamma + lethal” DFE models 
exist, and since these differ slightly from plth implemented in 
Galtier and Rousselle (2020), testing their ability compared to 
the plth implementation of a “gamma + lethal” DFE model is a topic 
worthy of further research (Boyko et al. 2008; Kim et al. 2017).

Experimental evidence suggest that the DFE of deleterious mu
tations follow a bimodal or perhaps even multimodal distribution, 
meaning that a good model fit may not be possible under classic 
parametric distributions such as exponential, gamma, or log
normal (Nielsen and Yang 2003; Eyre-Walker and Keightley 
2007; Kousathanas and Keightley 2013). Because of this, it would 
be worthwhile for future research to explore whether DFE model 
fitting under different distribution could result in an improve 

Fig. 7. Mean likelihood returned by polyDFE for estimates of S given 
combinations of fixed β and plth. A multispecies DFE where 20 neutral and 
selected SFSs from DFEs based on those estimated for A. lyrata, C. 
grandiflora, and Z. mays by Chen et al. (2017) were combined was used as 
data input for polyDFE. The dashed line show the mean β estimated for A. 
lyrata, C. grandiflora, and Z. mays. The results again shows that model 
likelihood can be artificially maximized under the assumption of a high 
value of plth, and the extent to which this happens depends on the initial 
values supplied to the DFE inference software.

Fig. 6. Value of the 20 entries of the SFSs of 3 different simulated DFEs (black, red, and blue) under 4 different plth values: a) plth = 0.0, b) plth = 0.3, c) 
plth = 0.6, and d) plth = 0.9. Confidence intervals fall within points as shown. The results show that increasing the plth value pushes the entries of different 
SFSs together by making them more numerically similar.
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model fit. In a recent study, the DFE was represented by using a 
nonparametric distribution in the form of several nonoverlapping 
uniform distributions (Johri et al. 2020). Some of the current DFE 
inference software can also be set to infer a DFE where selection 
coefficients take discrete values rather than necessarily conform
ing to a single continuous distribution (Tataru et al. 2017). 
Expanding the set of distributions typically used for the DFE model 
could prove to be fertile grounds for new research and result in 
more accurate models.

Conclusion
While the parameter plth can in principle improve the accuracy of 
inference, obtaining a good model fit under some nonzero plth va
lue should not be viewed as evidence for a proportion of plth muta
tions segregating in the population in question. This is because it 
can be shown that plth is not equivalent to the true proportion of 
lethals. When inferring a single DFE for a group of species or popu
lations, the usage of plth is also problematic since it modifies the 
data, resulting in different SFSs becoming more alike and artifi
cially increases the likelihood of the model inferred. Thus, com
paring the likelihood of two models with different plth values 
cannot be done in a standard way, since these two models will ef
fectively have different data. We have presented a detailed study 
of some of the problems with plth as a concept which will be useful 
to anyone modeling the DFE, especially with regard to avoiding 
model artifacts.

Data availability
The simulation software was implemented in C++, and the full 
source code is available at https://github.com/r02ap19/DFE_ 
Wright-Fisher01.

Supplemental material available at G3 online.
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Appendix A
Here, we show how to calculate the fraction of mutations with s > 
1 given some Ne and some gamma-distributed input distribution 

(Fig. 4). The calculations can in principle be performed for any in
put distribution where the probability density function and its 
parameters are known. As an example, we will use DelHSD from 
Tataru et al. (2017): a gamma distribution with a shape parameter 
of β = 0.4 and S = 10, 000 using S = 4Nes.

For any gamma distribution with shape parameter β and scale 
parameter θ, the probability density function is

f (x) =
1

(β − 1)!θβ xβ−1e−x
θ 

which we can use to find the fraction of mutations with s > 1 by in
tegrating f over [0, 4Ne]

∫
4Ne

0
f (x)dx 

Since E[ f (x)] = βθ, the probability density function for DelHSD be
comes

f (x) =
1

(0.4 − 1)!
10, 000

0.4

􏼒 􏼓0.4 x0.4−1e
− x

10,000
0.4 

And with Ne = 500, we get

1 − ∫
4Ne

0
f (x)dx = 1 − ∫

2,000

0
f (x)dx = 1 − 0.4012 ≈ 0.5988 = 59.88%.
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