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Abstract

The distribution of fitness effects is a key property in evolutionary genetics as it has implications for several evolutionary phenomena
including the evolution of sex and mating systems, the rate of adaptive evolution, and the prevalence of deleterious mutations.
Despite the distribution of fitness effects being extensively studied, the effects of strongly deleterious mutations are difficult to infer since
such mutations are unlikely to be present in a sample of haplotypes, so genetic data may contain very little information about them.
Recent work has attempted to correct for this issue by expanding the classic gamma-distributed model to explicitly account for strongly
deleterious mutations. Here, we use simulations to investigate one such method, adding a parameter ( py,) to capture the proportion of
strongly deleterious mutations. We show that py, can improve the model fit when applied to individual species but underestimates the
true proportion of strongly deleterious mutations. The parameter can also artificially maximize the likelihood when used to jointly infer a
distribution of fitness effects from multiple species. As py, and related parameters are used in current inference algorithms, our results
are relevant with respect to avoiding model artifacts and improving future tools for inferring the distribution of fitness effects.
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Introduction

The distribution of fitness effects (DFE) among new mutations has
long been recognized as having a fundamental importance in evo-
lutionary genetics since the shape of this distribution affects
many evolutionary phenomena. For example, the DFE governs
the rate of adaptive evolution (Fisher 1930; Schultz and Lynch
1997; Spigler et al. 2017) and the frequency (and hence prevalence)
of mutations with different effect sizes (Haldane 1937; Agrawal
and Whitlock 2012) and has important implication for phenom-
ena such as inbreeding avoidance, the evolution of sex, and mat-
ing system evolution (Kondrashov 1985; Hartfield and Keightley
2012; Hedrick and Garcia-Dorado 2016). Because of this, the DFE
has been extensively studied over several decades (for a review,
see Eyre-Walker and Keightley 2007). Many important results on
the DFE have emerged from this large body of literature; the DFE
differs among species (Charlesworth and Eyre-Walker 2006;
Castellano et al. 2018), and the shape depends on how well-
adapted the population is and its effective population size N,
(Eyre-Walker 2002; Lynch and Conery 2003; Goldstein 2013;
Huber et al. 2017). While the full DFE is probably complex and
multimodal, parts of the DFE of deleterious mutations can be
modeled as a leptokurtic gamma distribution (Loewe and
Charlesworth 2006; Silander et al. 2007) or by a series of discrete
bins showing the proportions of mutations with different effects
(Keightley and Eyre-Walker 2010).

Most of these results on the DFE have been obtained through
two experimental techniques: mutation-inducing experiments
and mutation accumulation experiments. In the former, muta-
tions are induced, and their effects are evaluated by comparing
different strains of a model organism using some trait, such as fer-
tility or growth rate, as a fitness proxy (Sanjuan et al. 2004). In the
latter and more common approach, an ancestral strain is splitinto
small, separate populations which are kept for many generations
under favorable conditions that impose very little selection
(Ohnishi 1977; Halligan and Keightley 2009; Bondel et al. 2019).
The effects of accumulated mutations can then be evaluated by
comparing the fitness proxy of the population strains with that
of the ancestral strain. The DFE can also be estimated by sampling
and comparing haplotypes from individuals in the wild (Dobzhansky
and Wright 1941; Crow and Temin 1964; Eyre-Walker et al. 2006;
Castellano et al. 2018). Data from the sampled haplotypes are often
analyzed in the form of a site frequency spectrum (SFS) which de-
scribes the frequency with which different alleles segregate in the
sampled population (Fisher 1931; Wright 1938; Evans et al. 2007).

One major challenge in DFE inference is measuring the occur-
rence of strongly deleterious mutations. Assuming deleterious
alleles are not completely recessive, their mutation-selection fre-
quency is generally proportional to 1/s, where s is the mutation’s
selection coefficient (Wright 1937; Crow and Kimura 1970), and
mutations are less likely to be present in a sample of haplotypes
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as they become more strongly deleterious due to the large select-
ive disadvantage they entail. In other words, the probability distri-
bution of mutational effects in segregating mutations only will
almost certainly be different from the probability distribution of
all mutations, since strongly deleterious mutations (with
s> 1/2N,) have a tiny probability of showing up in a population
sample (Crow and Kimura 1970; Reich and Lander 2001; Rice
et al. 2015). This emphasizes the importance of distinguishing be-
tween an observed DFE, consisting of alleles segregating in the gene
pool of a population at a given timepoint, and an input DFE that re-
presents the actual probability distribution of mutational effects
as they arise by mutation and are added to the gene pool.

Much work has been done on inferring what proportion of the
DFE consists of strongly deleterious mutations; a study on human
polymorphism data puts the estimate at <15% (Eyre-Walker et al.
2006). However, this proportion differs greatly among different
branches of the tree of life. The proportion of lethal mutations
was found to be approximately 40% in the vesicular stomatitis virus
(Sanjuanetal. 2004) and even above 70% in Drosophila (Keightley and
Eyre-Walker 2007). However, 2 mutations which are both described
as strongly deleterious can still be orders of magnitude different in
effect as mutations with, for example, s=10%/N, and s = 10°/N,
both satisfy s> 1/2N,. As a result, modern DFE inference algo-
rithms such as DFE-alpha (Eyre-Walker and Keightley 2007;
Keightley et al. 2016) and polyDFE (Tataru et al. 2017; Tataru and
Bataillon 2020) which all work by analyzing a SFS may struggle to
describe the extent to which many different strongly deleterious
mutations arise. This is partly because very strongly deleterious
mutations are unlikely to show up in a genome sample. However,
the number of nonsegregating sites in a genome sample (some of
which are presumed to be under strong purifying selection) may
provide information about the rate at which strongly deleterious
mutations occur. In any case, it is hard to differentiate the effect
sizes of mutations once the effect size is large, since such a muta-
tion will have essentially no probability of appearing in a genome
sample (Galtier and Rousselle 2020).

A few studies have attempted to account for these strongly
deleterious mutations by fitting a DFE under the assumption
that a certain fraction of mutations are so strongly deleterious
that they will remain absent from a haplotype sample, regardless
of N, (Eyre-Walker et al. 2006; Boyko et al. 2008; Elyashiv et al. 2010;
Kim et al. 2017; Galtier and Rousselle 2020). In particular, Galtier
and Rousselle (2020) used DFE methods to infer the mean N,s of
mutations among species, thereby obtaining estimate of the dif-
ference in N, between different species under the assumption
that species shared a common, gamma-distributed DFE. The field
of DFE research has often parameterized gamma distributions
through the usage of a shape parameter, often denoted g, and a
mean value (Keightley and Eyre-Walker 2007). The optimal shape
parameter of the gamma-distributed DFE varied greatly among
species, but a good fit for similar shape parameters was obtained
when a fraction of strongly selected mutations, with an effect size
making them deleterious to the point of being “essentially inde-
pendent of N,,” was included in the SFSs. Here, Ne-independent
mutations were defined as those deleterious enough so that their
probability of showing up in a haplotype sample is essentially zero
regardless of N,. Galtier and Rousselle (2020) implemented this
approach by assuming that a proportion of 0 < p;y, < 1 mutations
were either lethal or so strongly selected that they never appeared
ina SFS; each entry in the selected SFS was subsequently scaled by
1 - pin. The method yielded a high model likelihood but produced
surprising results such that estimates of the proportion of strong-
ly deleterious mutations (including lethal and nearly lethal

mutations) in Drosophila being over 50%, which is well above an or-
der of magnitude larger than previous and frequently used esti-
mates (lethal or very strongly deleterious mutations are
estimated to occur at a rate of approx. 10% of the rate of mildly
deleterious mutations; Simmons and Crow 1977; Crow and
Simmons 1983, also see Keightley and Eyre-Walker 2007). While
this method provides a way of accounting for strongly deleterious
mutations that will be absent from genomic data, the properties
and accuracies of this approach have yet to be fully investigated.

Here, we investigate to what extent explicitly accounting for
strongly deleterious mutations in a gamma-distributed DFE mod-
elimproves the accuracy of inference when inferring an input DFE
from simulated and genomic data. We do this by formulating a
genetically explicit individual-based Wright-Fisher model to
simulate steady-state observed DFEs under different strengths
of selective effects, then infer the DFEs using the state-of-the-art
DFE inference software polyDFE (Tataru et al. 2017). We show
that explicitly accounting for a proportion of strongly deleterious
mutations can increase the accuracy of inference when inferring
the DFE of a single population. However, we also demonstrate that
including this parameter artificially increases the inferred propor-
tion of strongly deleterious mutations when considering SFSs
from multiple different populations. We further show that the
Pitn resulting in the best model fit is not equivalent to the true pro-
portion of lethal or strongly deleterious mutations in both cases.

Methods

To simulate the observed DFE of a population, we model a diploid,
sexually reproducing Wright-Fisher population with discrete genera-
tions and a default population size of N =500. Individuals have two
different chromosomes, each with two homologs. Both chromosomes
have a map length of [0, R] where we used R = 10 such that any real
number r with 0 < r <R denotes a unique site on the chromosome;
the potential number of sites is therefore effectively infinite (e.g.
Roze and Rousset 2009). In the first chromosome, mutations are non-
neutral, although mutations that are effectively neutral can occur,
while in the second chromosome, mutations are fully neutral. The
sites on the neutral and nonneutral chromosome are used to calculate
aneutral and nonneutral SFS, respectively. These are then used as in-
put datasets for the DFE inference software (see below).

Individuals go through a life cycle similar to that of SFS_CODE
(Hernandez 2008). Specifically, individuals are sampled with a
probability relative to their fitness standardized by the mean fit-
ness of their sex. The fitness of the ith individual, w;, is defined as

Nhet Nhom
wi=[]@=-s/2 [] (1-5)) (1)
x=1 y=1

Thus, fitness is the product of the effects of all Nhet heterozygous
mutations and all Nhom homozygous mutations, thereby using a
model of selection where individual effects are additive within a
locus (i.e. h=1/2 for all mutations) and multiplicative between
loci. Selection coefficients s are sampled from a gamma distribu-
tion (see parameterization below). Parents each provide 1 of their
2 homologs to their offspring after a number of recombination
events, sampled from a Poisson distribution with mean R = 10,
has occurred. Mutations then occur in offspring, and the number
of mutations is sampled from a Poisson distribution with a mean
of U= 1.0 mutations per chromosome per generation, yielding a
per genome mutation rate similar to that of some eukaryotes
(Haag-Liautard et al. 2007). The number of neutral and nonneutral
mutations is sampled independently with the same mean. The
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selection coefficients of new mutations are sampled from a gam-
ma distribution with a mean of S = 2N,s and a shape parameter of
B. Sampled values of S are rescaled to s by calculating s =S/2N,
using the estimated N, for that parameter set (see below).
Offspring are created by randomly sampling a mother and a father
for each offspring, until N viable (w > 0) offspring have been pro-
duced with a constant 1:1 sex ratio. Once N viable offspring have
been formed, these will constitute the new parent generation.

To estimate N,, we added a single, neutral, linked locus to the
center of the nonneutral chromosome and mutated the locus at
a Poisson-distributed rate with a mean of 1 by adding a random
value sampled from N(0, 1) to the allelic value, thus having the lo-
cus satisfy Vi, = 1, which is the new genetic variance from muta-
tion appearing per generation (Lynch and Hill 1986; Barton and
Turelli 1989; Keightley and Otto 2006). The N, of the population
was defined as the mean (over 50 replicates) steady-state variance
at the neutral linked locus after a burn-in period of 10N genera-
tions. Without selection, the expected variance at this locus
is NVy =N,Vy (Lynch and Hill 1986), and this was confirmed
by simulation (Supplementary Information 1, Supplementary
Figure 1). Mutational effects were sampled as 2N,s (Hernandez
2008), then rescaled by dividing the sampled value with 2N, before
applying it in Eq. 1. To accomplish this, N, was estimated before
the Wright-Fisher simulation by plotting a standard curve of esti-
mated steady-state N, against an assumed N, (the value used to
rescale 2N,s to s) for a given gamma distribution of selective ef-
fects. This allowed us to know the approximate steady-state N,
which would emerge in our Wright-Fisher simulation before we
used these to simulate data for SFS construction (Supplementary
Information 2, Supplementary Figure 2).

Data for calculating SFSs were outputted from the simulation
after a burn-in period of 10N generations, after which the full
neutral and selected genomes of 10 random individuals (i.e. 20
haplotypes) where outputted and used to calculated 1 neutral
and 1 selected unfolded SFS. Unfolded SFSs were used throughout.

To infer the mean scaled selection coefficients of mutations
S=2N,s and the shape parameter B, we used polyDFE v1.11
(Tataruetal. 2017; Tataru and Bataillon 2020). To determine whether
these parameters could be obtained using our simulation setup, we
estimated them from SFSs calculated from simulated populations
with the same S and g combinations that Tataru et al. (2017) used
to test the inference of purely deleterious DFEs (see their Fig. 4).
We found that polyDFE could accurately infer them from our simu-
lations (Supplementary Information 3, Supplementary Figure 3) For
each single-species polyDFE run, an input file with 50 neutral and 50
selected SFS was used, wherein each pair of neutral and selected SFS
was calculated from the basis of a single replicate of a Wright-Fisher
simulation (hence 50 Wright-Fisher simulations per polyDFE run set
for single-species DFE). The assumed sequence lengths were 20,000
base pairs. For the multispecies polyDFE runs, an input file with 20
neutral and 20 selected SFSs from 3 different species was used (60
SFSs). The polyDFE command lines and init-files used are available
in Supplementary Information 4.

The concept of py, was previously used when fitting a single DFE
model to a collection of SFSs obtained from multiple different species
(Galtier and Rousselle 2020). To examine the efficacy and validity of py,
for fitting multispecies DFEs, we simulated various gamma-distributed
DFEs in different populations, calculated output SFSs for each popula-
tion, and inferred DFEs for datasets containing SFSs from multiple dif-
ferent populations. We repeated this analysis with DFEs inferred from
genomic data from different species (Chen et al. 2017).

For single-species inferences, we first used the model
described to simulate populations with S=2N,s in the range of

[1,000, 10,000] with increments of 1, 000 and g = 0.4. Each simula-
tion was replicated 50 times (500 replicates in total). For each
simulation set, we then inferred S and g using polyDFE under 10
different pyy, values in the range [0.0, 0.9] with increments of 0.1.
The parameter py, was implemented, following Galtier and
Rousselle (2020), by setting an initial pyy, value and scaling each
entry of the selected SFS by 1-py. For each py, value, 10
polyDFE runs were performed (1,000 polyDFE runs in total) since
the performance of polyDFE is affected by the initial S value
used. For each combination of pyy, value and simulation set, half
of the polyDFE runs were run using randomly sampled initial va-
lues of the estimated parameters. These values were sampled
from a uniform real distribution U(1,000, 10,000) for S and
U(0.2, 0.8) for B. For the other half of the polyDFE runs, the true va-
lues of Sand g were used as the initial value of the estimated para-
meters (following Tataru et al. 2017, Supplementary file 1, page 3).
To thoroughly test how pyy, affects the overall DFE inference under
weaker selection, we also studied the effect of p;, on S and Binfer-
ence given different combinations of S=50, 250, 2,500 and
B=0.15, 0.40, 0.65. For the simulation sets with S=2N,s in the
range of [1,000, 10,000] with increments of 1,000 and g= 0.4, we
used standard results from probability theory to calculate the
true proportion of lethal mutations resulting from these distribu-
tions (Appendix A) and compared it to the value of pyy, under
which the highest accuracy of inference was found.

We also studied the effects of p;y, on inference of multispecies
DFEs from more than 1 species and in particular if g is fixed be-
tween species. This was studied with both arbitrarily defined
weakly deleterious DFEs (which were used because they con-
tained hardly any strongly deleterious mutations), and DFEs in-
ferred from genomic data (Chen et al. 2017, 2020). First, we
simulated 3 Wright-Fisher populations with different DFEs
with the shape parameters g and means S of p=0.15, S=5,
=040, S=20, and B=0.65S=40. We then -constructed
polyDFE input files using 20 neutral and selected SFSs from each
population. Using polyDFE, S and g were estimated from this input
file under 4 different pyy, values using similar procedure of replica-
tion and definition of initial values as for the single-species case.
Second, using DFEs estimated from genomic data, we ran the
same analysis by simulating the DFEs estimated for populations
of Arabidopsis lyrata, Capsella grandiflora, and Zea mays using the
data of Chen et al. (2017). We compared the likelihood of the esti-
mated parameters under 4 different pyy, values, so that they cover
cases when the initial values were correctly defined and when
these were purposely highly inaccurate. Following Galtier and
Rousselle (2020), we also studied the effect of piy, on S inference
from these DFEs given different fixed values of g (as opposed to
jointly estimated). Confidence intervals of estimates shown in
plots were calculated as X + Z - 6/4/n with X being the mean value,
n being the sample size, and Z being the 97.5 percentile value of
the t-distribution given n — 1 degrees of freedom.

Results

Analytical results

To illustrate the utility of including a piy, parameter in DFE infer-
ence and determine where it might be most useful, we first pre-
sent analytical results demonstrating which deleterious alleles
are unlikely to be present in a population sample. Assume that
mutations are introduced at a rate  =4N.ulL for N, the effective
population size, p the per-site mutation probability per gener-
ation, and L the number of sites where selected sites are likely to
arise [e.g. nonsynonymous sites (Galtier 2016)]. A focal mutation
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has a scaled selection coefficient S = 2N,s as a heterozygote and is
in the population at a frequency x. If we sample n haploid gen-
omes, then the expected probability that this mutation is present
in i of n samples is (Tataru et al. 2017, Equation 1):

EP=il, S) = HiB(i, n, X)H(S, x) dx @)

Where B indicates the binomial distribution of sampling i selected
alleles from n genomes and H the expected time that the allele
spends between frequencies x and x + dx (Wright 1938):

e 1 — eS(1-x%) (3)

X(1-x)(1—e%)

Note there are a few differences between Eq. 3 and the version in
Tataruetal. (2017). Eq. 2 scales s by 2N, whereas Tataru et al. (2017)
use 4N, scaling, due to the different manner in which heterozy-
gote fitness is calculated. That is, we consider mutations to be
additive with a dominance coefficient of h = 1/2, such that the fit-
ness effect of a single heterozygous and homozygous mutation is
1-shand1-s,respectively. Sis alsomultiplied by -1in Eq. 3,s0a
positive value denotes a deleterious mutation with that selection
magnitude.

Using Poisson random field theory (Sawyer and Hartl 1992;
Sethupathy and Hannenhalli 2008), the probability of observing
a certain number of sites with i selected alleles is Poisson-
distributed with mean E(P=i) (Eq. 2). Hence, the probability
that no sites will have i selected alleles is e~tP=) and the
probability that no copies of the selected allele are present equals

[Tt e EP=) = e~ YU e The repository with the code used for all
simulations also contains a Mathematica notebook to perform
these calculations (see Data availability).

Figure 1 outlines the probability that no selected allele will be
present in a sample of genomes, for different sample sizes and
mutation rates. We see that if the mutation rate is low (9=0.1),
then even weakly deleterious mutations (S> 10) are unlikely to

be present. For # =1, while a small sample is also unlikely to con-
tain strongly deleterious mutations (S> 100), a large sample size
of 100 is likely to capture some strongly deleterious mutations
with 100 <S<1,000. A very large sample can capture even more
strongly deleterious mutations if the mutation rate is high
(60 =10). However, under all cases considered, it becomes unlikely
to sample extremely deleterious mutations (S approaching 5,000),
even with large sample sizes and mutation rates. Overall, for real-
istic sample sizes and mutation rates, once S exceeds 100, it be-
comes difficult to capture strongly deleterious mutations in a
population sample, and it is in this parameter space that p,
might be useful in capturing the proportion of these deleterious
mutations. A pi,-type parameter might also be necessary to cal-
culate the fraction of all deleterious variants if the population mu-
tation rate is very low.

Model fitting for single-species DFEs

In simulations with a high S, the accuracy of inference of S and g
was affected by piy, (Fig. 2, a and b), and the inaccuracy of infer-
ence in 4/10 of all cases was lowest under a nonzero value of pyy,
(Fig. 2, c and d). In these cases, the inaccuracy of inference (mea-
sured as the difference between log, (estimate/simulation) and 0O
such that log, (estimate/simulation) = 0 is maximum accuracy of
inference) decreased by a value between 0.13 and 0.99. In terms
of the actual estimates of S, this means that in the 4 cases where
pin improved the accuracy of inference, S was estimated 3-49%
(depending on simulation set) more accurately than in the corre-
sponding set where p;, =0.0. In general, S inference becomes
more inaccurate as pyy, increases; however, the accuracy of infer-
ence of Bis less affected unless pyy, is very high (Fig. 2). Atlow mu-
tation rates, high accuracy of inference can be achieved under a
high piy,, although this comes at the expense of the accuracy of in-
ference of g (see Supplementary Information 7).

Under low values of S and varying values of 8, nonzero values of
P generally increased the inaccuracy of inference, highlighting
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frequency spectra.
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that pyy, only improves the accuracy of inference when S is high
(Fig. 3).

By calculating the true proportion of lethals (Appendix A),
which can be used as a lower bound for the proportion of strongly
deleterious mutations, we found that the pyy, value resultingin the
highest accuracy of inference (Figs. 2 and 3) were not equivalent to
the true proportion of lethals (Fig. 4), with the true proportions
being much higher than those inferred using pyy,.

Model fitting for multispecies DFEs

We simulated weakly deleterious DFEs for multiple species
that had essentially 0 probability of yielding lethal mutations
(Supplementary Information 5, Supplementary Figure 4). Despite
this setup, we found that the likelihood of the estimated para-
meters could be artificially maximized when assuming a high pyy,
value, when inferring a joint set of DFE parameters from SFSs
across different species (Fig. 5a). When a DFE model is fitted to
SFSs from multiple species, the model likelihood is artificially max-
imized because a nonzero value of p;;, pushes the entries of the dif-
ferent SFSs closer together by making them numerically similar
(Fig. 6). That is, species with very different SFSs will seem to have
more similar SFSs under a high value of pyy,, because piy, will result
in the entries of these different SFSs all being closer to 0. Because of
this, fitting a single DFE model to joint SFS data yields a better mod-
el likelihood once pyy, is applied. Thus, we found that py, can

erroneously result in a high likelihood of a model despite essential-
ly no strongly deleterious mutations being present.

P can also artificially maximize the likelihood of DFE models
when simulating DFEs estimated from genomic data (Fig. Sb).
Whether the likelihood of the DFE model levels off or keeps in-
creasing with pjy, depends on the sampled initial values for the
polyDEFE runs. For high pyy, values, the initial values sampled for
each polyDFE run becomes increasingly important. This seems
to happen as the likelihood of the inferred DFE model drops sub-
stantially if the initial S fed into polyDFE was low, and the SFSs
are modified by a high pyy, value resulting in a seemingly very dele-
terious selected SFS. Because of this effect, 95% confidence inter-
vals on the mean likelihood increase as py, increases (Fig. 5). The
parameter pyy, can also artificially maximize the likelihood of a
DFE model in cases where g is fixed and S is inferred, similar to
the approach used by Galtier and Rousselle (2020) (Fig. 7).

Exploring wider parameter space

The effect of pyy, on the accuracy of inference was also tested un-
der larger population sizes and a larger number of sampled haplo-
types (Supplementary Information 6). While py, was less useful
for correcting the underestimation of the mean S when a larger
population size was used, the results remained qualitatively simi-
lar such that pyy, had a more positive effect on the accuracy of in-
ference as S was increased. The ability of py, to artificially
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Fig. 3. As Fig. 2, but instead using 9 simulation sets with different combinations of S and g (S =50, 250, 2,500 and g =0.15, 0.40, 0.65).
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Fig. 4. The true proportion of strongly deleterious mutations as a function
of S (same values as used in Fig. 2) given g = 0.40 and N, = 500 (Appendix
A). Red lines show the interval containing pyy, value which resulted in the
highest accuracy of inference (Figs. 2 and 3). The results show that the
lower bounds for true proportion of lethals for each simulation set
(points) are higher than the pjy, which results in the best accuracy of
inference (0.0-0.2, i.e. between the red lines).

maximize the likelihood of a model fitted to SFS data from mul-
tiple species was also tested under larger simulated population
and sample size, and this yielded a result that was qualitatively
the same (Supplementary Information 6, Supplementary Figures
5 and 6). That is, py, will also artificially maximize the likelihood

of a DFE model based on multiple species when these species
have larger populations. This makes intuitive sense given the
mechanism through which pyy, seems to cause the artificial maxi-
mization of likelihood; that is, the entries of different SFSs will be-
come numerically similar as a higher pyy, is used, regardless of the
sample size.

We also investigated inference in a single species using a 5-fold
lower mutation rate. Here, higher values of pjy, can result in the
best accuracy of inference for S; however, this happens at the ex-
pense of poor accuracy of inference of g (Supplementary
Information 7).

Discussion

Improving the accuracy with which we can infer the DFE is im-
portant since this is a fundamental parameter of evolutionary
genetics with implications for many branches of biology.
Constructing an accurate description of the DFE boils down to
constructing a model which can describe a wide range of effect
sizes of mutations at a broad range of frequencies and hence
can be applied to many different species. This is not a trivial
problem, because while several models consisting of parametric
distributions have been suggested, including gamma, exponen-
tial, and lognormal distributions, the evidence shows the DFE
of deleterious mutations follows some complex and multimodal
distribution rather than a simple parametric one (Nielsen and
Yang 2003; Eyre-Walker and Keightley 2007; Kousathanas and
Keightley 2013). Thus, fitting a single parametric distribution
model to a deleterious DFE can result in a biased estimate, and
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polyDFE for a multispecies DFE model against 10 p, values. g was
inferred, and S was assumed fixed at a randomly sampled value. polyDFE
runs were conducted on 20 neutral and selected SFSs from 3 different
simulated DFEs. a) Model likelihood for inference based on simulated
weakly deleterious DFEs with the shape parameters g and means S of
B=0.15, S=5,=0.40, S=20and f=0.65, S=40 combined into 1 data
input file. b) Model likelihood for inference based on the DFE of 3
populations simulated parameterized with data from Chen et al. (2017)
using DFEs inferred for A. lyrata, C. grandiflora, and Z. mays. The results
show that (1) model likelihood can be maximized under a high value of
Pin despite little or no strongly deleterious mutations being present in the
DFE because pyy, makes different SFSs more similar and (2) this effect can
also occur for DFE estimated from natural populations.

this bias is especially prone to affect the inferred proportion of
strongly deleterious mutations (Kim et al. 2017). Our results illus-
trate that once strongly deleterious mutations are present, ex-
panding the typical gamma distribution model of a DFE to one
which accounts for a proportion of strongly deleterious mutations
(Galtier and Rousselle 2020) can in principle improve the accuracy
of inference, although it can artificially increase the likelihood of
the inferred parameters when a single DFE is fitted to data from
different species or populations.

We show that when inferring a DFE from a single species, a
model under which pyy, > 0 can sometimes yield the highest likeli-
hood even when the DFE does not contain a fraction of pyy, strong-
ly deleterious mutations. This result highlights that py, is not the
true proportion of lethals and should not be viewed as such.
Future developments might produce a more useful correcting fac-
tor that accounts for underrepresentation of strongly deleterious
mutations while being compatible with classic parametric distri-
butions such as gamma distributions. This would likely involve
first calculating how much underestimating might occur, assum-
ing some gamma-distributed DFE, and part of answering this
would be to calculate the mean effect size of mutations with
2N¢S > 2Ne.

Further, the classic notion of a model likelihood is not well-
defined when using pys, since pyy, is used to multiply all entries of
the SFSs by 1 — pyw,. This rescaling results in the data itself being
modified and consequently 2 DFE models with differing values of
P Will be models on different datasets. This means that the like-
lihood of 2 different DFE models with different p;s, values cannot be
compared in the same way. This explanation does not mean that
there is a problem with the concept of model likelihood in general;
rather, it instead means that model likelihood cannot be used for

model selection in the same way when pyy, is used, since different
pin models are effectively attempting to explain different datasets.

Given SFS data from a single species, our results illustrate that
DFE inference performs better on strongly deleterious DFEs when
entries in the input SFS are modified by some value pyy, to reflect
the proportion of strongly deleterious mutations that will not
end up in a haplotype sample. This is in line with the results of
Fig. 4A in Tataru et al. (2017) showing that mutational effects are
underestimated when the input DFE is strongly deleterious, indi-
cating that strongly selected mutations are not fully detected or
represented in the haplotype sample. This is one parameter space
where including p;, may help with improving the accuracy of in-
ference, although the resulting pyy, values are unlikely to reflect
the actual proportion of strongly deleterious mutations. This
means that although including some value p;y, may improve the
model likelihood, py, cannot reliably be used to infer the propor-
tion of strongly deleterious mutations. A recent study wherein a
DFE model was derived on completely different principles (by con-
sidering gene regulatory networks and metabolic pathways) also
concluded that no parametric distribution suffices to describe
the DFE of strongly deleterious mutations and that a satisfactory
model must involve some extra class of strongly deleterious mu-
tation akin to pyy (Brajesh et al. 2019). These findings suggest our
conclusion has broad generality beyond the Wright-Fisher model.
In practice, information about the optimal value of py, to use
when fitting a DFE model to a particular species may eventually
be determined a priori based on the species in question. For ex-
ample, an application of Fisher’s geometric model (Fisher 1930)
to DFE theory yields the prediction that as the complexity of an or-
ganism increases, a larger proportion of the DFE should be strong-
ly deleterious (Lourengo et al. 2011; Tenaillon 2014). This has been
tested several times and found to be consistent with data by using
the level of pleiotropy as a proxy for the complexity of an organism
(Martin and Lenormand 2006; Huber et al. 2017).

Itis well-known that the likelihood of an individual DFE model
drops when fitted to multiple species (Huber et al. 2017; Galtier and
Rousselle 2020), which highlights that the DFE differs among spe-
cies (Eyre-Walker 2002; Lynch and Conery 2003). In this study, we
also show that pyy, can artificially improve the likelihood of par-
ameter estimates when a single DFE is fitted to multiple species.
This result has several important implications. First, it illustrates
the point that while the data strongly suggests the DFE of deleteri-
ous mutations usually follows a gamma and lethal model, it can
still result in a misleading description of the DFE when fitted to
data from multiple species. Second, it shows that since pyy con-
sists of a modification of the data, we should bear this in mind
when assessing the likelihood of a model; we find the likelihood
of a DFE model is maximized under a high p;y in cases where
the true DFE is known to be very weakly deleterious and known
to not contain a proportion of pyy, strongly deleterious mutations.
Because of this, we can conclude that if the likelihood of a given
DFE model for multiple species is maximized under the assump-
tion of some pyy, > O, this should not be considered evidence that
the DFEs being modeled does indeed contain a proportion of py,
strongly deleterious mutations. Third, our results offer an explan-
ation of the mechanism by which this effect occurs, namely, that
pin makes entries of different SFSs more numerically similar,
thereby inflating the likelihood of the resulting DFE model.
Several studies model DFEs as following a gamma and lethal
model, or gamma and “point mass” model (Eyre-Walker et al.
2006; Elyashiv et al. 2010), but when such models involve applying
a correction factor to SFSs, they seem unsuitable for fitting a single
DFE to data from a group of species.
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Fig. 7. Mean likelihood returned by polyDFE for estimates of S given
combinations of ixed g and pyy,. A multispecies DFE where 20 neutral and
selected SFSs from DFEs based on those estimated for A. lyrata, C.
grandiflora, and Z. mays by Chen et al. (2017) were combined was used as
data input for polyDFE. The dashed line show the mean g estimated for A.
lyrata, C. grandiflora, and Z. mays. The results again shows that model
likelihood can be artificially maximized under the assumption of a high
value of py,, and the extent to which this happens depends on the initial
values supplied to the DFE inference software.

While our study is limited to purely deleterious DFEs, more
work on improving the accuracy of inference for DFEs with bene-
ficial mutations is also needed, since recent work shows that
the occurrence of strongly beneficial mutations (much like strong-
ly deleterious mutations) can make DFE inference inaccurate

(Booker 2020). Even in the study of purely deleterious DFEs, atten-
tion has almost exclusively been focused on the effects of SNPs
(resulting from point mutations), but the DFE of INDELs (inser-
tions and deletions) is understudied, and accounting for such mu-
tations might require a slightly different modeling approach
(Barton and Zeng 2018). As in our study, mutational effects are
most often assumed to be additive; however, the average domin-
ance coefficient of new mutations appears to be substantially low-
er than h=1/2 (Mukai et al. 1972; Simmons and Crow 1977; Lynch
et al. 1999; Fernandez et al. 2004; Spigler et al. 2017). While it is im-
plicitly assumed that current DFE inference algorithms remains
accurate when the assumption of additive dominance is violated,
very little work has been done to test this assumption (but see
Wade et al. 2022). Similarly, other “gamma + lethal” DFE models
exist, and since these differ slightly from pj;, implemented in
Galtier and Rousselle (2020), testing their ability compared to
the pyy, implementation of a “gamma + lethal” DFE model is a topic
worthy of further research (Boyko et al. 2008; Kim et al. 2017).
Experimental evidence suggest that the DFE of deleterious mu-
tations follow a bimodal or perhaps even multimodal distribution,
meaning that a good model fit may not be possible under classic
parametric distributions such as exponential, gamma, or log-
normal (Nielsen and Yang 2003; Eyre-Walker and Keightley
2007; Kousathanas and Keightley 2013). Because of this, it would
be worthwhile for future research to explore whether DFE model
fitting under different distribution could result in an improve
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model fit. In a recent study, the DFE was represented by using a
nonparametric distribution in the form of several nonoverlapping
uniform distributions (Johri et al. 2020). Some of the current DFE
inference software can also be set to infer a DFE where selection
coefficients take discrete values rather than necessarily conform-
ing to a single continuous distribution (Tataru et al. 2017).
Expanding the set of distributions typically used for the DFE model
could prove to be fertile grounds for new research and result in
more accurate models.

Conclusion

While the parameter pyy, can in principle improve the accuracy of
inference, obtaining a good model fit under some nonzero py, va-
lue should not be viewed as evidence for a proportion of p, muta-
tions segregating in the population in question. This is because it
can be shown that pyy, is not equivalent to the true proportion of
lethals. When inferring a single DFE for a group of species or popu-
lations, the usage of pyy, is also problematic since it modifies the
data, resulting in different SFSs becoming more alike and artifi-
cially increases the likelihood of the model inferred. Thus, com-
paring the likelihood of two models with different pyy, values
cannot be done in a standard way, since these two models will ef-
fectively have different data. We have presented a detailed study
of some of the problems with p, as a concept which will be useful
to anyone modeling the DFE, especially with regard to avoiding
model artifacts.

Data availability

The simulation software was implemented in C++, and the full
source code is available at https:/github.com/r02ap19/DFE_
Wright-Fisher01.

Supplemental material available at G3 online.
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Appendix A

Here, we show how to calculate the fraction of mutations with s >
1 given some N, and some gamma-distributed input distribution

(Fig. 4). The calculations can in principle be performed for any in-
put distribution where the probability density function and its
parameters are known. As an example, we will use DelHSD from
Tataru et al. (2017): a gamma distribution with a shape parameter
of f=0.4 and S =10, 000 using S = 4N,s.

For any gamma distribution with shape parameter g and scale
parameter 0, the probability density function is

e

which we can use to find the fraction of mutations with s > 1 by in-
tegrating f over [0, 4N,]

Since E[f(x)] = p0, the probability density function for DelHSD be-
comes

1 0.4-1 ~1T0,000
X) = X7 e 04
fx) 10, 000)0.4

(04— 1)!( 52

And with N, =500, we get

4Ne 2,000
1- | f®dx=1- [ f(x)dx=1-0.4012 » 0.5988 = 59.88%.
0 0
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