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Abstract 
The study of mating systems, defined as the distribution of who mates with whom and how often in a sexually reproducing population, forms a 
core pillar of evolution research due to their effects on many evolutionary phenomena. Historically, the “mating system” has either been used 
to refer to the rate of self-fertilization or to the formation of mating pairs between individuals of distinct sexes. Consequently, these two types 
of mating systems have tended to be studied separately rather than jointly. This separation often means that mating systems are not necessarily 
researched in a coherent manner that might apply to different types of organisms (e.g., plants versus animals, or hermaphrodites versus dioe-
cious species), even if similar mechanisms may drive the evolution of self-fertilization and mating pair formation. Here, we review the evolution 
of both plant and animal mating systems, highlighting where similar concepts underlie both these fields and also where differing mechanisms 
are at play. We particularly focus on the effects of inbreeding, but also discuss the influence of spatial dynamics on mating–system evolution. 
We end with a synthesis of these different ideas and propose ideas for which concepts can be considered together to move towards a more 
cohesive approach to studying mating–system evolution.
Keywords: self-fertilization, polygyny, mating system, inbreeding, spatial evolution, Baker’s law, transmission advantage

Introduction
A species’ mating system, which can be described as the dis-
tribution of “who mates with whom and how often” in a sex-
ually reproducing population (Barrett, 2013), has attracted 
the attention of evolutionary biologists since Darwin’s (1877) 
seminal work. This is because a species’ mating system is a 
major determinant of the distribution and maintenance of 
genetic diversity (Barrett et al., 2014; Ellegren & Galtier, 
2016; Hartfield et al., 2017; Wright, 1951; Wright et al., 
2013), and also modulates the strength and direction of sex-
ual selection, generating much of the fascinating diversity in 
life, for instance, in the shapes of flowers or the courtship rit-
uals of many animals (Barrett, 2002; Shuster & Wade, 2003). 
Strictly speaking, the term “mating” involves a direct sexual 
encounter (copulation) between a male and a female with the 
potential outcome of insemination and fertilization. This defi-
nition applies to sexually reproducing animals with distinct 
sexes (gonochorism), but not to plants, external spawners, or 
sessile animals such as marine invertebrates, where the pollen 
or sperm is released into the environment and fertilization 

is independent of a direct encounter between the sexes. If 
we broaden the definition of the term “mating system” to 
describe patterns of fertilization, we can apply this frame-
work across taxa and to species that do not require copula-
tion for insemination. Through the lens of these definitions, 
we aim to shed light on the key differences and commonalities 
in the evolutionary drivers that shape mating–system evolu-
tion across taxa.

In plant biology, the mating system usually refers to the 
selfing rate (Neal & Anderson, 2005), i.e., the proportion of 
self-fertilized progeny produced by self-compatible hermaph-
rodites. This also holds for some hermaphroditic animals such 
as snails (Jarne & Charlesworth, 1993) or nematodes (Picard 
et al., 2021), but hermaphroditism is much more phylogenet-
ically constrained in animals compared to angiosperms (Jarne 
& Auld, 2006). Plant mating systems are categorized as out-
crossing (cross-fertilization), autogamous (self-fertilizing), or 
mixed mating, where both strategies are employed (Richards, 
1997). Immobile plants, with their modular structure and 
widespread overwhelming hermaphroditism, are primarily 
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faced with the problem of whether to self or not. Notably, 
around 50% of angiosperms self-fertilize to some degree, with 
between 10-15% being predominantly selfing (Goodwillie et 
al., 2005; Igic & Kohn, 2006), including several important 
food crops (Zohary et al., 2012). Because of the frequency of 
self-fertilization in hermaphroditic plants, research on plant 
mating systems has tended to be framed in terms of the costs 
and benefits of inbreeding and how natural selection acts to 
either allow, promote or prevent inbreeding (Takebayashi & 
Morrell, 2001). The relationship between inbreeding depres-
sion and the “transmission advantage” of self-fertilization 
(Fisher, 1941) has therefore largely shaped theoretical mod-
els of mating–system evolution in plants (e.g., Lande & 
Schemske, 1985).

In contrast with plants, the theory of mating–system evo-
lution in animals has been largely focussed on gonochoric 
organisms, where the mating system typically describes how 
individuals form mating pairs over time and the type of pair 
bond formed, such as monogamy, polygyny, polyandry, and 
promiscuity (Emlen & Oring, 1977). Hermaphroditic species 
are estimated to represent 5%–6% of animal species, though 
this figure increases to 33% when insects are excluded. The 
distribution of selfing rates in animals is similar to plants, 
although estimates are based on fewer species (Avise, 2011; 
Escobar et al., 2011; Felmy et al., 2023; Jarne & Auld, 2006; 
Pannell & Jordan, 2022). In animals, however, there has been 
much less consideration of inbreeding as a driver of “who 
mates with whom,” although considerable attention has been 
dedicated to whether and when animals should inbreed or 
not (Jarne & Auld, 2006; Kokko et al., 2014). Indeed, sep-
arate sexes and the evolution of pre-mating dispersal due to 
drivers such as kin competition and environmental variabil-
ity (Clobert, 2012) mean there is a lower risk of inbreeding 
compared to plants (de Boer et al., 2021). Instead, theoreti-
cal work on the evolution of animal mating system strategies 
has focussed on competition for access to mates (usually for 
males), resource availability (usually for females), and the 
resulting operational sex ratio, together with sexual selection 
and parental care (Emlen & Oring, 1977; Kokko et al., 2014; 
Royle et al., 2012; Shuster & Wade, 2003; Trivers, 1972).

Thus, studies of mating systems of plants and animals have 
differed markedly in the types of questions addressed and in 
the theoretical frameworks developed (cf. Goodwillie et al., 
2005; Kokko et al., 2014). This is despite the conceptual sim-
ilarity of some of the concepts that each field has focussed on. 
Our goal in this review is to compare and, where possible, 
align evolutionary concepts and the terminology used in plant 
and animal mating system research and to uncover where 
concepts that are more developed in one area of research can 
be usefully applied in the other. We argue that new insights 
can be gained by thinking about how these different cat-
egorizations differ from those provided in each “standard” 
body of literature, prompting more nuanced questions into 
why certain mating system traits evolve. For example, Cutter 
(2019) compared pollen and sperm production in plants and 
animals. Selfing plants tend not to be pollen-limited but might 
use fewer numbers for outcrossing after self-fertilization, a 
phenomenon known as “pollen discounting.” In contrast, 
the selfing nematode Caenorhabditis elegans is inherently 
sperm-limited; as it produces sperm before oocytes, there is a 
trade-off between increasing fecundity through higher sperm 
numbers and growth rate through earlier fertilization (Cutter, 
2004). This comparison hence raises the more fundamental 

question of how selfing organisms regulate pollen or sperm 
numbers following a shift to inbreeding and whether the out-
comes differ depending on whether the species is a plant or 
an animal.

In this review, we primarily focus on the role of inbreed-
ing as a driver of mating–system evolution. We thus compare 
the advantages and costs of inbreeding and mechanisms of 
inbreeding avoidance across plants and animals. We also 
focus attention on the role of spatial dynamics, which have 
been given comparatively less emphasis than inbreeding, and 
how these dynamics affect mating–system evolution in both 
systems. We explain how these key factors can be influenced 
by ecological, environmental, or demographic factors that 
affect how mating–system evolution acts out in nature. Figure 
1 summarizes the different concepts we compare in this 
review. It highlights comparisons between ideas developed 
with plants in mind, with a focus on the contrast between 
selfing and outcrossing, and animals, with a focus on mat-
ing under gonochoric reproduction or biparental inbreeding. 
In some cases there are no obvious similarities, such as with 
parental care in animals. However, there are several poten-
tially useful links, including the reasons for and implications 
of avoiding selfing in plants and avoiding biparental inbreed-
ing in animals. A key aim of our review is to encourage the 
application of the concepts and ideas generated by zoologists 
to plants and vice versa, to allow researchers to think more 
cohesively about the underlying causes of mating–system evo-
lution in their chosen fields.

Advantages of inbreeding in plants and 
animals
The genetic advantage of inbreeding: automatic 
gene transmission
Any individual that reproduces by outcrossing contributes a 
single copy of its genes to its progeny, with the second copy 
coming from his or her partner. By contrast, progeny pro-
duced by selfing receive both copies of their genome from the 
same parent. As Fisher (1941) first noted, an allele causing 
a hermaphrodite in an otherwise outcrossing population to 
self-fertilize will have an immediate 50% transmission advan-
tage compared to competing alleles at the same locus (Figure 
2). This advantage arises because selfing hermaphrodites 
transmit genes to the next generation through both male and 
female gametes used to outcross, and also through male gam-
etes used for selfing.

Fisher’s insight forms the fundamental basis of much of 
the theoretical analysis of the evolution of selfing versus out-
crossing in hermaphroditic populations, but the idea is gen-
erally applicable to autosomal loci that influence the rate of 
inbreeding (Kokko & Ots, 2006). In the latter case, the gene 
transmission benefits of inbreeding have been framed in terms 
of inclusive fitness in the sense that inbred progeny carry two 
copies of the same gene that are identical by descent (Kokko 
& Ots, 2006; Szulkin et al., 2013). While there have been 
some attempts to bridge the concept of automatic gene trans-
mission advantage through selfing and biparental inbreeding 
(e.g., Olsen et al., 2021), a systematic comparison and con-
trast of these different concepts is missing.

Although models of biparental inbreeding predict evolution 
of inbreeding preference under restricted circumstances, such 
as low inbreeding depression and female choice (Duthie et 
al. 2016; Kokko & Ots, 2006; Puurtinen, 2011), inbreeding 
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preference is rarely seen (or at least reported) in animals (de 
Boer et al., 2021; Kokko & Ots, 2006). There are key differ-
ences between species that are able to self-fertilize and species 
with obligate biparental reproduction, which may complicate 
predictions of allele dynamics under biparental inbreeding 
(Duthie & Reid, 2016). These complications may lead to the 
transmission advantage of inbreeding being comparatively 
weaker through biparental inbreeding than through selfing. 
Most gonochoric animals display pre-mating dispersal, where 
offspring disperse as juveniles or before reproduction, from 
the place of birth to the place of reproduction (Bowler & 
Benton, 2005). Among several factors, kin competition and 
stochasticity in the environment are key drivers of juvenile 
dispersal (Bowler & Benton, 2005; Clobert, 2001, 2012). In 
most animals, pre-mating dispersal coupled with separate 
sexes means that individuals are fundamentally less likely to 
reproduce with relatives, and thus selection on inbreeding 
strategies (either preference or avoidance) will be weaker than 
in hermaphroditic organisms. This expectation is supported 
by the absence of active inbreeding preference and inbreeding 

avoidance mechanisms in many species (de Boer et al., 2021; 
Pike et al., 2021).

Another factor pertaining to systems with separate sexes, 
which can change predictions on the transmission advantage 
of biparental inbreeding compared to selfing, is the extent to 
which conflict arises over whether to mate with a related indi-
vidual or not. The reason is that, under polygyny (i.e., males 
mate with multiple females), the transmission advantage 
typically differs between sexes, with males usually tolerating 
higher levels of inbreeding depression because they typically 
forgo fewer outbreeding opportunities per inbred mating 
than females (Waser et al. 1986; Parker 2006; Puurtinen 
2011; Szulkin et al. 2013; Duthie & Reid 2016). The sex dif-
ferences disappear when relatedness between mates is 1 (as 
under self-fertilization) because both partners achieve the 
same fitness from their own and from their partner’s repro-
duction (i.e., they are genetically identical).

Despite the potential gene transmission advantages of bipa-
rental inbreeding through inclusive fitness, the above argu-
ments lead to the general expectation that these advantages 

Figure 1. An overview of the concepts present and being compared in this review. Different colors denote the different major themes discussed here. 
Ideas on the left-hand side are those that are normally applied to hermaphrodite plants, while those on the right apply to gonochoristic (i.e., separate 
sex) animals. Concepts on the same line denote ideas that seem to be equivalent between the two groups but are considered in different ways (e.g., 
self-fertilization in plants compared to biparental inbreeding in animals).

D
ow

nloaded from
 https://academ

ic.oup.com
/jeb/advance-article/doi/10.1093/jeb/voaf009/8046103 by guest on 05 April 2025



4 Clo et al.

should be comparably small and rarely lead to inbreed-
ing preference. Even when obligate inbreeding occurs as a 
reproductive strategy in animals somewhat similar to self-
fertilization in plants (Avilés & Purcell, 2012), this is hypothe-
sized to result from constraints on pre-mating dispersal rather 
than driven by the transmission advantage (Settepani et al., 
2017). Transmission advantages via inclusive fitness benefits 
may then come into play during and after the evolution of an 
inbreeding mating system (Lubin & Bilde, 2007), but it seems 
unlikely that they would drive the evolution of inbreeding 
preference.

The demographic advantage of inbreeding: 
reproductive assurance
Alongside the advantages of inbreeding in propagating an 
individual’s own genotype, inbreeding also confers repro-
ductive assurance against mate limitation. If mate limitation 
is sufficiently strong, selfing can be selected for even when 
inbreeding depression is high (Cheptou, 2004). This is espe-
cially recognized in the plant literature, where there is a well-
known demographic advantage of selfing in hermaphroditic 
organisms (Goodwillie & Weber, 2018; Opedal et al., 2016). 
This is common following (re-)colonization of empty habitat 
patches, range expansions, and at the margins of a species’ 
range (reviewed in Pannell, 2016; Pannell et al., 2015). The 
association between increased capacity for uniparental repro-
duction and (long distance) dispersal ability is at the heart of 
“Baker’s law,” which was initially formulated for the coloni-
zation of oceanic islands and subsequently developed regard-
ing extinction-colonization dynamics in metapopulations 
and colonisations during invasions, range expansions (Baker, 
1955, 1967; Pannell & Barrett, 1998; Pannell et al., 2015). 
Pannell et al. (2015) pointed out that Baker’s law describes 

the demographic sieve on preexisting variation in the mating 
system that is present during long-distance dispersal, leading 
to colonization of new patches. For example, within some 
plant species with mating system variation among popula-
tions, autogamous populations are more frequent at range 
margins (although this pattern may have alternative expla-
nations, including selection under reduced pollinator or mate 
availability in marginal populations; Pujol et al., 2009; Griffin 
& Willi, 2014; Matos Paggi et al., 2015; but see Herlihy & 
Eckert, 2005). Consequently, selfing lineages are expected 
to be better colonizers than their outcrossing counterparts 
(Baker, 1955; Grossenbacher et al., 2017), which could facili-
tate the expansion of species’ ranges into environments where 
pollinators or conspecifics are scarce (Grossenbacher et al., 
2015). In line with these ideas, selfing species may have larger 
areas of distribution than outcrossing species (Lowry & 
Lester, 2006) and are more frequently found at high latitudes 
(Grossenbacher et al., 2015).

Reproductive assurance as a supposed advantage of self-
ing also occurs in hermaphroditic animals. For instance, 
hermaphroditic populations (compared to separate sex pop-
ulations) are found at range margins in shrimps inhabiting 
ephemeral ponds (Longhurst, 1955), the observation that 
apparently inspired Baker’s law (Pannell et al., 2015). Other 
forms of reproductive assurance occur in hermaphroditic ani-
mals, for instance, in the form of delayed selfing (e.g., in fresh-
water snails, Noël et al., 2016) or in the form of hypodermic 
self-insemination (Ramm et al., 2015).

Reproductive assurance plays out differently in gonocho-
ric animals, and the notion that mating with close relatives 
may be an adaptation to mate limitation has received rela-
tively little attention, although models predict higher inbreed-
ing tolerance (yet not preference) when mate encountering 

Figure 2. Illustration of the 1.5-fold transmission advantage of selfing. Arrows show transmission of pollen from each individual. “O” indicates pollen 
from outcrossed individuals, “S” indicates pollen from selfing individuals.

D
ow

nloaded from
 https://academ

ic.oup.com
/jeb/advance-article/doi/10.1093/jeb/voaf009/8046103 by guest on 05 April 2025



Journal of Evolutionary Biology, 2025, Vol. XX, No. XX 5

rates are low (e.g., Kokko & Ots, 2006). Males, as the mate-
limited sex, are under strong selection to compete for females. 
Furthermore, as a general rule, since a male can fertilize 
multiple females (e.g., through polygynous or promiscuous 
mating systems), there is high variation in reproductive suc-
cess among males. This reinforces sexual selection on traits 
to monopolize females (harem polygyny) or to combat other 
males pre- or post-mating (e.g., sperm competition) if females 
mate with multiple males (i.e., polyandry, which is very 
common, especially when there is no male care or resource 
provisioning; Taylor et al. (2014)). In the context of mate lim-
itation, the evolution of female mating with multiple males 
can help overcome reproductive failure (Greenway et al., 
2015). However, it also enables fertilization with unrelated 
or more genetically compatible sperm, which is proposed 
to facilitate the successful colonization of new habitats and 
promote adaptation to environmental change (Candolin & 
Heuschele, 2008; Lewis et al., 2020; Parrett & Knell, 2018), 
and protect against extinction in small populations (Yasui & 
Garcia-Gonzalez, 2016). Female multiple mating may also 
reduce the cost of inbreeding (explained further below in the 
section “Consequences of mating system for genetic diversity 
and evolution”). In the context of range expansion, the com-
bined effects of spatial sorting for dispersal traits and spatial 
selection on life histories, whereby traits that enhance disper-
sal ability and reproductive rate are “sorted” along density 
clines (Alex Perkins et al., 2013; Phillips et al., 2010; Shine 
et al., 2011; Van Petegem et al., 2016), describe a process 
very similar to Baker’s law. Although attention has been given 
mainly to the spatial sorting and selection of dispersal and 
reproductive rate, these processes may also affect traits that 
allow individuals at the expanding margin to overcome mate 
limitation and ensure reproduction, such as traits enhancing 
mate finding (Tschol et al., 2024), female multiple mating, or 
inbreeding tolerance.

In contrast, the study of dioecy in flowering plants focuses 
less on its consequences with regards to sex-specific mating 
and sexual selection. Dioecy is rare at the species level but 
common at the family level, implying that while hermaphro-
ditism is generally favoured there may be common ecological 
or environmental conditions that underlie it. Hence, research 
has instead tended to focus on uncovering which traits cor-
relate with dioecy to test hypotheses regarding its appear-
ance (Renner, 2014; Renner & Ricklefs, 1995; Vamosi et al., 
2003). Specifically, dioecy is observed to be more common 
in wind-pollinated species than animal-pollinated species. An 
early hypothesis for this association is that wind-pollinated 
species do not need to have both male- and female functions 
within the same flower (Grant, 1951), unlike with animal pol-
lination where flowers benefit from donating and receiving 
pollen per visit (Charlesworth, 1993). Furthermore, wind pol-
lination of cosexual plants has been posited to lead to “pollen 
clogging” where self-pollen lands on the stigmas and pre-
vents efficient cross-fertilization (Charlesworth, 1993; Lloyd 
& Webb, 1986). Dioecy is also associated with longevity, as 
long-lived species are better able to withstand a poor breeding 
season and are less in need of reproductive assurance (Baker, 
1955; Renner, 2014). Longer-lived plants are also larger and 
hence more prone to geitonogamy (selfing from the same pol-
linator visiting multiple flowers on a plant), which can cause 
inbreeding depression (Barrett et al., 1996). An additional 
complicating factor is that dioecious plants can sometimes 
exhibit “leaky” sex expression and create mating-structures 

associated with the opposite sex (Pannell, 2017). This can 
also be seen as a reproductive assurance mechanism; for 
example, an experiment with Mercurialis annua systemat-
ically removed males from a dioecious population, which 
led to females evolving male function and reproducing by 
self-fertilization (Cossard et al., 2021).

Costs of inbreeding in plants and animals
The cost of inbreeding due to “pollen discounting” 
and its animal cognates
Various factors can modulate the balance between transmis-
sion advantage and inbreeding depression (Charlesworth 
& Charlesworth, 1987a; Charlesworth et al., 1990; Lloyd, 
1979, 1992; Lloyd & Schoen, 1992). In selfing species (espe-
cially plants), an important question concerns how many out-
crossing opportunities males forego due to selfing, referred 
to under the term “pollen discounting” (Holsinger, 1991; 
Porcher & Lande, 2005; Jordan & Otto, 2012; see Figure 3). 
This constraint has the potential to impede the evolution to 
high selfing rates in the absence of an inbreeding cost, as pol-
len discounting reduces the transmission advantage by limit-
ing the amount of pollen carrying the selfing allele to other 
individuals (Nagylaki, 1976). Conversely, if selfers show 
higher siring success than self-incompatible individuals (i.e., 
negative pollen discounting), then selfing can be favoured 
even if there is no transmission advantage (Stone et al., 2014).

In animals, the term “opportunity cost” refers to the cost 
paid by inbreeding individuals when mating with relatives 
reduces mating opportunities, including outbreeding oppor-
tunities (Parker, 2006; Waser et al., 1986). Kokko and Ots’ 
(2006) model predicts that when the choice between a related 
or an unrelated mating partner occurs sequentially, and espe-
cially in combination with low mate availability, mating with 
relatives should be tolerated compared to when the choice is 
simultaneous (Kokko & Ots, 2006). Moreover, choice mecha-
nisms such as pre-mating discrimination against related mates 
(Pusey & Wolf, 1996) or post-mating mechanisms of prefer-
ential fertilization with sperm from unrelated males (Jennions 
& Petrie, 2000), are somewhat comparable to hermaphro-
dites rejecting self-pollen in plants. One explanation for the 
evolution of female multiple mating is protection against fer-
tilizing the eggs with sperm from related males (Bretman et 
al., 2004; Jennions & Petrie, 2000). If there is a risk of mating 
with a close relative but also a risk of remaining unmated, 
then female multiple mating would ensure reproduction and 
facilitate post-mating mate choice, e.g., against related males.

The immediate genetic costs of inbreeding: 
inbreeding depression
Any genetic advantage conferred by inbreeding must be set 
against the potential disadvantage of reduced progeny fitness 
due to inbreeding depression caused by the expression of del-
eterious recessive mutations in the homozygous state or loss 
of heterozygote advantage (Charlesworth & Charlesworth, 
1987a; Charlesworth & Willis, 2009). Inbreeding depres-
sion is considered the key factor counteracting the evolution 
to high rates of inbreeding (Charlesworth & Charlesworth, 
1987a). The transition to inbreeding mating systems and self-
ing should only be possible if the benefits of various repro-
ductive strategies (e.g., the automatic transmission advantage, 
reproductive assurance, or reduced dispersal costs) outweigh 
the cost of inbreeding depression (Goodwillie et al., 2005; 
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Settepani et al., 2017). A value of zero implies an absence 
of inbreeding depression, while a value of one indicates that 
inbreeding is lethal. Negative values are indicative of out-
breeding depression, where inbreeding actually yields higher 
fitness. Negative values are generally found in predominantly 
selfing species due to, e.g., accumulation of genetic incom-
patibilities (including Dobzhansky–Müller incompatibilities 
or chromosomal rearrangements) that can be fixed within 
inbred lines at local geographic regions, which are exposed 
during rare outcrossing events between those lines (Clo et al., 
2021; Soto et al., 2023).

Because the automatic transmission advantage of self-
fertilization amounts to a fitness benefit of 50%, inbreed-
ing depression must exceed 0.5 for selection to favour 
outcrossing, otherwise complete selfing is favoured (Lande 
& Schemske, 1985; Charlesworth & Charlesworth, 2010, 
Box 9.3). Comparisons of inbreeding depression in plant 
populations found that selfing species have lower median 
inbreeding depression (measured around 0.3) than mixed 
mating and outcrossing species (measured median values of 
0.5–0.6; Winn et al., 2011). These observations are consis-
tent with the prediction that strong inbreeding only evolves 
when inbreeding depression is relatively low. Yet, it could 
also be the case that selfing species have purged deleterious 
alleles that would reduce fitness (see below). Under biparental 
inbreeding, since it is less severe than selfing and hence the 
gene transmission advantages are weaker, then the evolution 
of inbreeding will be disfavoured by selection at lower levels 
of inbreeding depression, with the threshold inbreeding level 
differing between the sexes (Duthie & Reid 2015, 2016a, 
Parker, 2006).

Despite theoretical expectations that only obligate outcross-
ing or selfing are stable states, a large proportion of angio-
sperms (around 35%–40%) are mixed mating (Goodwillie 
et al. 2005). Hermaphroditic animals, such as flatworms or 

snails, are often predominantly outcrossing, with occasional 
selfing when mating partners are absent (Jarne & Auld, 2006). 
Nonetheless, there is variation in selfing in these animals with 
the selfing rate being negatively correlated with the level of 
inbreeding depression (Escobar et al., 2011). Similarly, her-
maphroditic marine invertebrates show widely distributed 
inbreeding values, suggesting variable selfing rates with a dis-
tribution similar to that of plants (Olsen et al., 2021). Again, 
some species with intermediate values occur, suggestive of 
mixed mating.

Inbreeding and the purging of inbreeding 
depression
Inbreeding increases population-level homozygosity above 
Hardy–Weinburg equilibrium. For “regular” systems of 
inbreeding, where the extent of inbred matings is fixed and 
known, there are equations that relate the degree of inbreed-
ing to the elevation in homozygosity (see Box 1 for details). In 
particular, selfing causes the most drastic effects of inbreeding 
compared to biparental inbred matings. Increasing homo-
zygosity within a population means that inbreeding depres-
sion will decrease, as inbred and outbred offspring will have 
similar fitness if all individuals carry the same deleterious 
mutations at the homozygous state (Bataillon & Kirkpatrick, 
2000). This effect makes a reversion to a more outcrossing 
reproductive strategy unlikely (Abu Awad & Billiard, 2017; 
Charlesworth et al., 1990; Harkness et al., 2019; Kamran-
Disfani & Agrawal, 2014; Lande & Porcher, 2015).

The level of homozygosity at equilibrium in a population 
will depend on how inbreeding occurs (compare expressions 
in Box 1). The resulting homozygosity is proposed to lead to 
“purging” of deleterious mutations, where recessive variants 
are exposed to selection and subsequently removed (Crnokrak 
& Barrett, 2002). It has been hypothesized that “slow” rates 
of inbreeding (i.e., low elevated homozygosity and half-sib 

Figure 3. A cartoon demonstrating “Pollen discounting.” Note that while plants (and pollen) are shown here, the same general ideas also apply to self-
fertilizing animals and limited sperm for outcrossed matings after selfing.
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Box 1:Inbreeding coefficients and effective population sizes

Nonrandom mating, in whatever form it occurs, will inevitably have consequences on the effective population size Ne. The effective size is a 
measure of the amplitude of genetic drift both due to demographic processes (i.e., fluctuations in population size, population structure) and 
inbreeding, a concept first introduced by Wright (1931). In the case of the effect of inbreeding on Ne, an important parameter is the coeffi-
cient of inbreeding, FIS (hereafter denoted F). The inbreeding coefficient concretely represents the departure from Hardy–Weinberg (H-W) 
frequencies and is part of a set of measures developed for subdivided populations (F-statistics; Wright (1951)). In the simplest case of a 
single bi-allelic locus, with alleles A and a, present at frequencies p and q respectively (with p = 1 − q), the expected genotypic frequencies 
in a population of fixed size, with no selection or mutation, are:

Genotype AA Aa aa
Frequencies p2 + Fpq 2pq(1 − F) q2 + Fpq

In panmictic populations, F = 0, and genotypic frequencies are at H-W equilibrium. Deviations from panmixia (i.e., random breeding 
pairs) can take many forms and include reproductive strategies such as self-fertilization, sib mating, assortative mating, polyandry, or polyg-
yny. Most forms of nonrandom mating result in inbreeding, meaning that 0 ≤ F ≤ 1. In this case, it is obvious from the expressions above 
that the main consequence of inbreeding will be the reduction of the proportion of heterozygotes (respectively, increase of the proportion 
of homozygotes). However, this is not always the case, with, for example, polyandry due to male-biased dispersal seems to lead to F ≤ 0 
(Sugg et al., 1996) and simulations show that such multiple mating among females can result in a higher expected Ne (at least temporarily; 
Lotterhos, 2011).

The inbreeding coefficient is likely to change with every generation of nonrandom mating. For situations where the reproductive mode is 
considered stable, expressions for this quantity have been proposed (Caballero & Hill, 1992b) and a few simple cases can be found (Table 
I). How F is calculated depends on the type of inbreeding exhibited in a population, as does the consequent rescaling of Ne. Caballero and 
Hill (1992a) proposed the following general expression to describe the relationship between Ne and F for a population of fixed size N, where 
there are equal sexes and inbreeding is due to mating with relatives (e.g., sib mating):

Ne =
4N

2 (1− F ) + S2 (1+ 3F ) (i)

Here, S2 is the corrected variance of the number of gametes contributed per parent to the next generation given by 𝜎2 N/(N − 1), where 
𝜎2 is the true variance. If inbreeding is due to selfing, the equation for Ne is instead given by:

Ne =
4N

2 (1− F) +
(
Sg
)2

(1+ F) (ii)

where Sg is the variance in the number of successful gametes (and is not necessarily equal to S in Equation i, as explained below). From 
these general expressions, one can see that the variance in the number of offspring alone has a significant effect on Ne, with very high 
variance resulting in very small effective size (Gillespie, 1974). If the number of gametes contributed follows a Poisson distribution of family 
size, as is the case in the Wright-Fisher model, this gives S2 = 2 for biparental inbreeding and (Sg)

2 = 2 + 2ɑ under selfing (forɑ the selfing 
rate), and we obtain the often-used expression for Ne = N/(1+F).

The qualitative relationship between F and Ne is unchanged for different values of S2 as can be seen in Figure A1. As F increases, Ne 
decreases, whatever the mechanism behind an increased inbreeding coefficient. However, to obtain these expressions, several simpli-
fying assumptions have to be made, such as discrete generations, autosomal inheritance (not sex-chromosome linked) and the absence 
of selection, i.e., there is no correlation between the fertility of a parent and that of its offspring. Accounting for more complex genetic 
structures (i.e., selection, interactions between loci) can cause Ne to be decreased even further, with the expression for F becoming more 
complex. This is in great part due to increased linkage and identity disequilibria (Roze, 2016; Uyenoyama & Waller, 1991). Most works have 
examined these genetic effects when inbreeding is due to selfing, but it is quite probable that similar effects would be observed for other 
forms of inbreeding.

Table 1. Expressions for the coefficient of inbreeding F at equilibrium for specific breeding strategies, where α is the 
rate of inbreeding, considered fixed. These expressions are valid in the simplest scenario, not accounting for selection, 
fluctuating population size or linkage as presented in (Caballero & Hill, 1992a). Sex ratios are considered equal and 
population size is infinite.

Type of inbreeding Coefficient of inbreeding, F

Self-fertilization α
2−α

Partial full-sib mating α
4−3α

Partial half-sib mating α
8−7α
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mating) can reduce the magnitude of expressed inbreeding 
depression compared to “fast” rates of inbreeding (i.e., high 
elevated homozygosity and full-sib mating, or self-fertilization;  
Demontis et al., 2009; Porcher & Lande, 2016; Swindell 
& Bouzat, 2006). This is because selection is more effective 
under slow inbreeding due to more efficient purging of delete-
rious mutations due to a higher effective population size, Ne, 
and selection for heterozygous individuals (Wang et al. 1999). 
There is some empirical support for the effect of slow inbreed-
ing influencing the magnitude of inbreeding depression using 
different rates of experimental inbreeding in Drosophila lines 
(Demontis et al., 2009; Pekkala et al., 2014), with a recent 
experiment showing that inbreeding load is removed after 
around 100 generations under slow inbreeding (Pérez-Pereira 
et al., 2021). One caveat that has been raised with measur-
ing mutation purging is that if one observes increased fitness 
over time in an experiment, this could actually reflect adap-
tation to experimental conditions rather than active purging 
(Crnokrak & Barrett, 2002; Willis, 1999).

The evolution of sociality in spiders is accompanied by a 
transition to full-sib mating and obligatory inbreeding (Lubin 
& Bilde, 2007). A history of slow inbreeding due to philo-
patry in ancestral subsocial species might lead to purging and 
inbreeding tolerance (Bilde et al., 2005), which then facili-
tates the transition to an obligatory inbreeding (full-sib mat-
ing) mating system and permanent sociality (Berger-Tal et 
al., 2014). Because inbreeding depression amounts to active 
selection against deleterious mutations, understanding mat-
ing–system evolution must ultimately account for the joint 
evolution of inbreeding depression otherwise theoretical mod-
els may fail to predict equilibrium conditions (Duthie & Reid, 
2016a; Porcher & Lande, 2013). This is also the case when 
considering the evolution of self-fertilization (as reviewed by 
Charlesworth & Charlesworth, 1998).

Inbreeding also reduces N
e (Box 1), exacerbating the 

effects of genetic drift and reducing the efficacy of selection 
(Charlesworth, 2003; Glémin, 2003). These processes theo-
retically lead to elevated accumulation of deleterious muta-
tions in the genome, especially in predominantly inbred or 
selfing populations. Empirical support has been found in 
Arabidopsis lyrata (Willi, 2013) and in the genus Stegodyphus 

(Settepani et al., 2017), but not in the Triticeae clade (Escobar 
et al., 2010). In animal populations, inbreeding can be used to 
refer to any process that elevates homozygosity, even if there 
is no active mate choice with related individuals. In particular, 
small population sizes will lead to genetic drift creating ele-
vated homozygosity in a population, which can superficially 
resemble inbreeding. However, the dynamics of deleterious 
mutation purging are different; only highly recessive muta-
tions are purged by drift, whereas deleterious mutations with 
any dominance level can be removed by active inbreeding. 
One reason for this difference is that the efficacy of selec-
tion is reduced in small populations, weakening the potential 
to purge deleterious mutations (Glémin, 2003). These drift 
effects can alter the steady-state level of self-fertilization; the 
presence of restricted gene flow and density-dependent reg-
ulation in spatial populations, leading to increased genetic 
relatedness (and hence “biparental inbreeding”), can lead 
to intermediate levels of self-fertilization being maintained 
(Ronfort & Couvet, 1995; Uyenoyama, 1986).

Purging of inbreeding depression can also change the real-
ized level of inbreeding in a population. For example, in a 
mixed-mating selfing species, if selfed offspring exhibit high 
inbreeding depression then they will not persist, so the remain-
ing population is effectively outbred (Kelly, 1999). A similar 
mechanism was also observed in song sparrows, where fol-
lowing a population crash caused by severe winter weather, 
the individuals that survived were less inbred than those that 
died (Keller et al., 1994).

Consequences of the mating system for genetic 
diversity and evolution
In species with separate sexes (both plants and animals), an 
imbalance in the variance in mating success between sexes 
can affect genetic diversity. Ne will decrease in cases where 
females are limited in mating opportunities compared to 
males (Balloux & Lehmann, 2003), due to an elevation of 
drift that accelerates loss of genetic diversity. Female multi-
ple mating can counteract this effect by reducing variance in 
reproductive success among males, meaning that a greater 
proportion of the population contributes to reproduction, 
resulting in an increase in Ne over monandry (Lotterhos, 

Figure A1. The relative effective-to-census population size (Ne/N) as a function of the inbreeding coefficient F, calculated using Equation i. The 
different coloured lines represent different variances in gamete or progeny number S2.
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2011). Similarly, self-fertilization is expected to decrease the 
amount of genetic diversity for several reasons. First, Ne of 
self-fertilizing populations should be smaller than that of 
their outcrossing counterparts (Box 1). Consequently, due to 
increased genetic drift causing loss of variants, selfing popula-
tions should exhibit a decrease in neutral diversity. The same 
logic should also apply under full-sib mating in gonochor-
ous organisms. Empirical data on molecular markers strongly 
support this prediction; intraspecific (see, for example, Barrett 
& Husband, 1990) and interspecific (Charlesworth, 2003; 
Glémin et al., 2006; Hamrick & Godt, 1996; Settepani et al., 
2017) comparisons have confirmed that selfing (and inbred 
biparental populations) have less neutral molecular genetic 
diversity than outcrossing ones. However, when looking at 
quantitative genetics data, selfing was not observed to affect 
heritable variance of quantitative traits (Clo & Opedal, 2021; 
Clo et al., 2019; Opedal et al., 2017).

Because of the inevitable unidirectional evolution towards 
high self-fertilization, coupled with the genetic consequences 
associated with it (including potentially reduced adaptive 
potential and decreased selection against deleterious muta-
tions; Barrett et al., 2014; Hartfield, 2016; Hartfield et al., 
2017), it is expected that lineages that transition from out-
crossing to selfing will lead to extinction at a faster rate than 
those that do not (the “dead-end hypothesis”; Igic & Busch, 
2013; Takebayashi & Morrell, 2001). Phylogenetic data sup-
porting this idea is found in plants (Goldberg et al., 2010; 
Goodwillie, 1999) and in the nematode genus Caenorhabditis 
(Cutter et al., 2019). A similar signal is observed with bipa-
rental inbreeding, where it has appeared relatively recently in 
spiders and other arthropods (Settepani et al., 2017).

Mechanisms of inbreeding and inbreeding 
avoidance
In plants and hermaphroditic animals
As most angiosperms are hermaphroditic, the evolution of 
pollen recognition systems (gametophytic or sporophytic 
self-incompatibility) and separate sexes (dioecy, gyno- or 
androdioecy), are studied from the angle of inbreeding avoid-
ance (Charlesworth & Charlesworth, 1978, 1987b; Freeman 
et al., 1997). While it has been customary in many modelling 
studies to consider the rate of inbreeding as a simple variable, 
it is, in reality, the outcome of a complex process (Whitehead 
et al., 2018). In plants, the selfing rate depends on the actual 
mechanism of selfing, and, how much and when self-pollen 
versus outcross pollen grains are deposited on a stigma, and 
the pistil’s physiological response to the pollen mix presented 
to it (Eckert et al., 2010).

Prior, competing and delayed selfing constitute modes that 
differ in terms of the relative timing of self- versus outcross 
pollen deposition on stigmas (Eckert et al., 2010). Traits 
that may reduce selfing in these animals are an asynchro-
nous release of male and female gametes by a given individ-
ual (Lotterhos et al., 2010), but many of these species are 
understudied and their possible mechanisms of inbreeding 
avoidance are unknown. Prior selfing corresponds to the 
context-independent situation, often implicit in mathemati-
cal models, where a given proportion of ovules is destined 
for self-fertilization by the individual genotype (Davis & 
Delph, 2005; Tian-Bi et al., 2008). In many natural popula-
tions, however, the selfing rate is the outcome of competition 
between self-pollen and outcross pollen grains simultaneously 

deposited on a stigma, a phenomenon called competing self-
ing (Goodwillie & Weber, 2018). The realized mating system 
then depends on the proportion of self- versus outcross pollen 
grains deposited on the stigma, as well as on the extent to 
which the stigma differentially promotes their passage in the 
race to fertilize ovules (Sakai, 1995). The rate of competing 
selfing is context-dependent because the mix of self and out-
cross pollen deposited on a stigma depends on the identity 
and behaviour of the pollen vector, and on the number, den-
sity, and size of outcross pollen donors in the mating neigh-
bourhood (Elle et al., 2010). Analogous to the competition 
between self and non-self-pollen in plants, sperm competition 
has been shown to strongly favour outrossed over self sperm 
in C. elegans (Ward & Carrel, 1979).

Self-fertilization can also be delayed. Here, plants may have 
mechanisms that limit and/or avoid the deposition of their 
pollen on their own stigmas when flowers first open, and 
self-fertilizing occurs after outcrossing opportunities have 
been exhausted (Eckert et al., 2010). In situations in which 
outcross pollen is not deposited on the stigma early in the 
flowering period, selfing may be allowed or promoted by the 
late breakdown of a self-incompatibility system, or as a result 
of the movement of anthers towards and onto the stigma (see 
for example Kalisz et al., 1999). Alternatively, protogyny can 
also promote delayed selfing, with stigmas becoming recep-
tive to outcross pollen before the flower’s anthers open but 
remaining receptive to the later arrival of self-pollen and thus 
allowing self-fertilization if all ovules have not already been 
fertilized (Lloyd & Webb, 1986). In populations in which 
individuals only have one chance to mate, such as annuals or 
monocarpic perennials, delayed selfing would seem to repre-
sent a particularly promising strategy that both promotes out-
crossing and assures reproductive success when outcrossing 
is ultimately not possible (Aarssen, 2000). Delayed selfing is 
much more permissible and is expected to always be favoured 
unless inbreeding depression is lethal (Goodwillie & Weber, 
2018; Lloyd, 1979, 1992). Delayed selfing for reproductive 
assurance is also commonly observed in usually outcrossing 
hermaphroditic snails (e.g., Auld & Henkel, 2014; Tsitrone et 
al., 2003) and flatworms (Ramm, 2017). Conceptually, this is 
similar to the prediction that dioecious animals should have 
an increased propensity to mate with relatives if individuals 
can reproduce several times in their life, but there are long 
wait times between matings due to, e.g., low mate encounters 
or long time-outs after matings (Kokko & Ots, 2006).

Selfing may also result from pollen transfer between differ-
ent flowers of the same individual (geitonogamy), at rates that 
can be context-dependent (Jong et al., 1993). Geitonogamy 
is a particularly deleterious outcome of mating because it 
implies (1) the production of potentially low-quality selfed 
offspring and (2) pollen discounting (Holsinger, 1991; Jordan 
& Otto, 2012; Porcher & Lande, 2005). Geitonogamous 
selfing should be context-dependent in several ways. First, 
as for competing selfing, the selfing rate through geitonog-
amy should depend on the relative abundance of open flow-
ers on the target plant relative to those on other individuals 
(Eckert, 2000). Plants with relatively large floral displays are 
expected to experience higher levels of geitonogamy because 
pollinators will tend to stay on the plant for longer, transfer-
ring pollen among its flowers, compared to those with smaller 
displays (Eckert, 2000). Second, the geitonogamous selfing 
rate may depend on which pollinators are abundant at the 
time of mating (Snow et al., 1996). Third, the geitonogamous 
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selfing rate experienced by individual flowers can depend on 
their position in the floral display in some species. For exam-
ple, flowers have been found to have greater selfing rates at 
the top of vertical inflorescences than at the bottom because 
bumblebees tend to probe flowers in succession from bottom 
to top (Barrett et al., 1994). We do not know of any strict 
analogy of geitonogamy in animals. However, within-clone 
mating in facultatively asexual species, which is genetically 
equivalent to self-fertilization, may be regarded as conceptu-
ally similar.

Due to the potentially negative effects of inbreeding in 
plants, various adaptations have arisen that prevent it. These 
include the presence of self-incompatibility loci, which detect 
if incoming pollen is from a related individual and reject 
the mating if so (De Nettancourt, 2013). There can also be 
floral modifications that prevent inbreeding by pollinators 
(reviewed by Barrett, 2002). These include heterostyly where 
the presence of different stamen-style configurations mini-
mize self-pollination, and enantiostyly where flowers have 
mirror-image configurations. Dichogamy is another mecha-
nism, where flowers activate their male, female functions at 
different periods so only one is principally functional at a 
given time.

In gonochoric species, especially animals
As mentioned above, the theory of dispersal evolution in 
animals suggests that several factors, such as kin competi-
tion and environmental stochasticity drive evolution of natal 
pre-mating dispersal, which facilitates outcrossing (Bowler 
& Benton, 2005; Clobert, 2001). Furthermore, in small pop-
ulations or group-living species where the risk of mating 
with relatives is high, inbreeding depression may also drive 
the evolution of pre-mating dispersal as a means of inbreed-
ing avoidance, which is often sex-biased (Bocedi, 2021; 
Guillaume & Perrin, 2009; Pusey & Wolf, 1996; Ronce, 
2007; Roze & Rousset, 2009; Szulkin & Sheldon, 2008). 
Selection on mechanisms to recognize related individuals 
and avoid consanguineous matings should then be relaxed 
in species with effective juvenile dispersal or when animals 
do not live in structured groups of relatives. Perhaps because 
many gonochoric animals do not frequently face a high risk 
of inbreeding, the prevalence and magnitude of inbreeding 
and inbreeding depression in wild animal populations are not 
well understood. Most data comes from small island popu-
lations or threatened species, mostly vertebrates (Crnokrak 
& Roff, 1999; Hasselgren & Norén, 2019; Huisman et al., 
2016; Reid et al., 2007; Stoffel et al., 2021). These studies, 
however, report inbreeding depression of a magnitude that is 
likely to be of ecological significance in natural populations. 
Therefore, although the risk of inbreeding might be low in 
many species, the costs of inbreeding depression in species 
with a high risk of reproduction among consanguineous 
mates should favour mechanisms of inbreeding avoidance.

However, two recent meta-analyses suggest that the evi-
dence for inbreeding avoidance in animals is highly variable, 
with a high prevalence of non-biased mating with respect to 
relatedness. That is, there is neither inbreeding avoidance nor 
preference (de Boer et al., 2021; Pike et al., 2021). Factors 
that contribute to the strength of selection for inbreeding 
avoidance include the magnitude of inbreeding depression 
(Berger-Tal et al., 2014; Pike et al., 2021), the frequency of 
interactions with relatives, and potential for causing out-
breeding depression by mating with unrelated partners 

(Berger-Tal et al., 2014; Dorsey & Rosenthal, 2023). Both 
pre- and post-mating adaptations to reduce the possibility of 
inbreeding have been documented in cases where there is a 
chance of mating with relatives, for example, in small pop-
ulations or in social groups (Jennions & Petrie, 2000; Pusey 
& Wolf, 1996). Pre-mating adaptations include kin discrim-
ination (which can be seen as similar to self-incompatibility 
in plants) and sex-biased dispersal, which are predominantly 
found in group-living animals where philopatry increases the 
risk of inbreeding (Facon et al., 2006). Post-mating adapta-
tions include polyandry, as female multiple mating can act 
as means of inbreeding avoidance via multiple mechanisms. 
Female multiple mating increases the proportion of half-sibs 
relative to full-sibs in the population, thereby reducing the 
level of close inbreeding (Bocedi, 2021; Germain et al. 2018). 
It also opens the possibility for sperm competition and cryptic 
female choice, potentially facilitating fertilization with sperm 
from unrelated males (Bilde et al., 2007; Bretman et al., 2004; 
Tregenza & Wedell, 2002).

Spatial dynamics and mating–system 
evolution
Spatial dynamics and mating–system evolution in 
animals
Spatial dynamics include processes that shape selection on 
mating system strategies in different ways. Some of these 
processes arise as a consequence of evolution in small and 
potentially isolated populations. These outcomes include 
founder effects, increased genetic drift and the subsequent 
risk of inbreeding, mate limitation and spatial sorting and 
selection of “colonizer” traits during range expansions. The 
specific spatial structure, connectivity among sub-populations 
and extinction-colonization dynamics, shape the level of gene 
flow among populations and the relatedness structure within 
populations. As such, spatial dynamics can create multiple 
and sometimes contrasting selection pressures on mating sys-
tem traits but also, importantly, on dispersal traits. Evolution 
of mating systems and dispersal have therefore the potential 
to affect each other; however, we still know very little about 
their joint evolution (Auld & Rubio de Casas, 2013).

In the now classic theory of evolution of animal mating 
systems, spatial dynamics are considered not so much in 
terms of mate availability and reproductive assurance but 
rather in terms of mate monopolization (Shuster & Wade, 
2003). While males are limited by access to females, females 
are limited by resources; therefore, females disperse accord-
ing to resources and males according to females. This can 
lead to males holding territory with many females or males 
monopolizing a harem of females, both leading to a single 
male fertilizing many females, termed polygyny. This results 
in high variance among males in fertilization success and 
reduces Ne. This effect is particularly strong when males 
provide no offspring care. Female polyandry can counteract 
this effect (see above). In some systems, the degree of spa-
tial aggregation (or spatial crowding) of receptive females, 
together with temporal crowding (or synchronization), is 
one of the key drivers determining who mates with whom 
and the intensity of sexual selection. Whether only females 
or also males provide parental care (see below) is also key 
for the evolution of different mating systems (e.g., from 
monogamy to polygyny, polyandry, or promiscuity; Trivers 
(1972)).
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In addition, and contrary to plants, many animals display 
pre-mating dispersal. The main factors driving dispersal are 
reducing competition with kin over resources, inbreeding 
avoidance, heterosis, and variation in resources over time 
and space (Clobert 2001; Bowler & Benton 2005; Ebert et 
al., 2002; Guillaume & Perrin, 2006; Ronce, 2007; Rosa & 
Saastamoinen, 2017; Roze & Rousset, 2009). If kin competi-
tion leads to pre-mating dispersal as a common pattern, it fol-
lows that the risk of reproducing among relatives is reduced, 
and would suggest that the former is a stronger driver as it 
occurs earlier in the life cycle. However, separating kin com-
petition from inbreeding avoidance as drivers of pre-mating 
dispersal is inherently difficult (Bowler & Benton, 2006). 
Some species display sex-biased dispersal (though these 
observations are still not theoretically or empirically resolved; 
Li & Kokko, 2019), notably some mammals and birds, with 
male-biased dispersal sometimes reported to be more com-
mon in mammals (expected to be largely polygynous) and 
female-biased dispersal more common in birds (expected to 
be largely monogamous, at least socially; Greenwood, 1980). 
A meta-analysis provides support for the resource competi-
tion hypothesis (Greenwood, 1980), identifying parental care 
and sexual dimorphism as major drivers of sex-biased disper-
sal (Trochet et al., 2016). The role of social systems emerges 
as an important factor in shaping sex-biased dispersal in birds 
and mammals but also sex differences in the acquisition of 
mates and other resources influence asymmetry and direc-
tion of dispersal among the sexes. There are, however, only a 
few reports of sex-biased dispersal in other major taxonomic 
groups (arthropods, amphibians, reptiles, fish; Trochet et al., 
2016). Eusocial insects are typically characterized by monog-
amy or secondary polyandry (see, for example, Boomsma & 
Ratnieks, 1997), and outcrossing is maintained by pre-mating 
dispersal of sexuals (both males and females).

In contrast to social species with outcrossing mating sys-
tems, the joint evolution of sociality and obligate inbreeding 
(which could present a parallel to selfing) has evolved in differ-
ent arthropod taxa (Chapman et al., 2000; Keller et al., 2011; 
Settepani et al., 2017). The prevailing hypothesis for this tran-
sition is that constraints on pre-mating dispersal coupled with 
inbreeding tolerance and benefits of social living leads to strict 
inbreeding (Settepani et al., 2017), rather than transmission 
benefits or reproductive assurance. Dispersal occurs post-
mating by fertilized females or by fission of groups, which 
implies a complete lack of gene flow among breeding groups.

Spatial dynamics and mating–system evolution in 
plants
The evolution of mating systems over spatial scales under-
lie some of the earliest hypotheses regarding the evolution of 
self-fertilization, most notably Baker’s law and reproductive 
assurance as explained in preceding sections. One of the few 
models that consider the joint evolution of dispersal and mat-
ing systems has been developed under conditions of pollen 
limitation (Cheptou & Massol, 2009; Massol & Cheptou 
2011a). Based on observations that some inbred weeds can 
evolve selfing in the face of heterogeneous environmental and 
pollinator effects (Grant, 1967), they considered the joint evo-
lution of dispersal and self-fertilization where pollination is 
stochastic. They find that two different syndromes evolve; one 
of highly dispersing outcrossers, and another of selfers with 
low dispersal rate. The reason for these different syndromes 
evolving is that, if pollination is erratic, then outcrossing 

individuals with higher dispersal rates would be selected for 
in case there is a lack of pollination, avoiding extinction at the 
local scale. Conversely, selfers suffer from inbreeding depres-
sion and are poor competitors with outcrossers, hence limit 
dispersal in order to avoid others. These predictions seem to 
contradict the initial predictions made by Baker’s law and 
triggered debates as to how Baker’s law should be defined 
and whether it is due to just mate limitation or also pollinator 
limitation (Busch, 2011; Cheptou, 2012; Massol & Cheptou, 
2011b; Pannell et al., 2015). Pannell et al. (2015) concluded 
that while both these effects can be considered by Baker’s 
law, mate limitation is a more relevant mechanism driving 
it. Recently, Weissman et al. (2024) showed that cleistogamy 
(closed flowers on a plant that promotes self-fertilization) is 
more prevalent in seemingly less stable biomes, in line with the 
idea that unpredictable environments can promote increased 
selfing locally. However, this was an observational study; it 
remains to be tested if environmental unpredictability is the 
cause behind increased cleistogamy, and whether such species 
also have lower dispersal in line with the models of Cheptou 
& Massol (2009) and Massol & Cheptou (2011a).

It has been shown in animals that pre-mating disper-
sal can evolve to limit competition among kin for local 
resources. This pattern can theoretically be found in plants 
too; following Cheptou and Massol (2009) and Massol & 
Cheptou (2011a), the presence of any limiting resource 
(e.g., pollinators, nutrients) might lead to the evolution of 
dispersal and outcrossing mating strategies. To our knowl-
edge, no studies yet exist in linking competition for local 
resources with the mating system in plant species at large 
taxonomic scale (File et al., 2011). In the mixed-mating 
species, Impatiens capensis, Schmitt and Ehrhardt (1987) 
tested the sib-competition hypothesis and found no evi-
dence that sibling competition for local resources should 
enhance outcrossing in controlled conditions for their 
model species. A similar trend has been found in the plant 
species Anthoxanthum odoratum (Kelley et al., 1988). 
Testing the hypothesis of pre-mating dispersal could either 
be done by replicating studies at the species level, or by 
working at a larger taxonomic scale. One can think about 
looking at the proportion of outcrossing and selfing species 
at a metapopulation scale, and the variation of the mating 
system within-species in the same design, as a function of 
an estimator of resource competition (as measured by, e.g., 
plant density or species diversity).

Selection for capacity for self-fertilization in otherwise 
outcrossing colonizing species can evolve to avoid local com-
petition. For example, many studies found a prevalence of 
self-compatible species on islands (Bernardello et al., 2001; 
Chamorro et al., 2012), even if others found a high propor-
tion of self-incompatible and/or dioecious plant species in 
oceanic islands (Bawa, 1982; Carlquist, 1966; Sakai et al., 
1995). More recently, Grossenbacher et al. (2017) found a 
greater proportion of self-compatible species in islands com-
pared to mainland regions, at a large taxonomic scale (>1,500 
species). This variation in outcomes among studies could be 
attributed to the evolution of self-incompatibility systems 
and/or reproduction traits after colonization and establish-
ment (Pannell et al., 2015). However, the association between 
self-compatibility and island colonization seems to be the 
rule, even if the forces (e.g., avoiding local competition or 
lack of compatible pollinators) driving the association still 
need to be elucidated.
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Additional mechanisms
In Box 2, we outline two additional cases where there are 
ideas specific to one kingdom but with few analogous mecha-
nisms in the other and discuss whether the plant-animal divide 
can be bridged accordingly. First, we outline how parental 
care in animals affects mating–system evolution, especially 
with regards to how the contribution from each parent influ-
ences which mating system is favoured. Second, we describe 

“promiscuity” and reproductive variance in selfing and out-
crossing plants, explaining mechanisms that could conceptu-
ally be similar to promiscuity in animal mating systems.

Perspective and future directions
In this review, we have aimed to provide a broad overview 
of “mating system” scholarship when considered in animals 

Box 2: Parental care, plant promiscuity, and mating–system evolution

Parental care

There is remarkable variation in patterns of parental care across the animal kingdom. In mammals, offspring care is predominantly provided 
by females; in some fish and birds, care is provided only by males; and in birds there is often biparental care. Many species, mostly inver-
tebrates, have no parental care. Whether males contribute to care or not has major implications for the mating system (Emlen & Oring, 
1977). In the absence of male parental care, the ability to monopolize females or resource holding territories promotes polygyny. Polygyny 
also arises following lek formation, where males gather to display in a single spot. Conversely, if single females hold large territories and 
males need to search for females, the distribution of matings becomes less biased and promotes monogamy. Monogamy is generally 
selected against and is only stable when biparental care is required for offspring to survive; this is seen in some bird species and fish. 
Many birds show social monogamy but have a genetically promiscuous mating system (Griffith et al., 2002), as both sexes seek extra-pair 
matings; males to directly increase reproductive success, and females to acquire indirect genetic benefits (Jennions & Petrie, 2000). Only 
when both parents are constrained in their ability to seek mates outside their social bond do we expect to see genetic monogamy. Finally, 
when males provide exclusive care, as seen in some birds and fish species, we expect to see sex-role reversal with females competing for 
access to male parental care. This can lead to sequential polyandry with the female leaving each male to care for the eggs, while she seeks 
a new male to care for the next batch of eggs.

In contrast, these notions of parental care are hardly transposable to plants. One main difference is that most angiosperms are monoe-
cious having the two sexes on the same individual. This weakens some sexual selection concepts and theoretical expectations for such 
organisms (Morgan, 1994). However, one parallel is possible when looking at resource allocation. In plants, similar to polyandrous animal 
species, females generally mate with several males in outcrossing and mixed-mating species (Barrett & Harder, 2017). This can potentially 
lead to inter-sexual conflict for the allocation of maternal resources in the different fertilized ovules (Haig, 2000). Indeed, while mothers 
are theoretically expected to maximize their fitness by allocating resources equally among offspring, fathers increase their fitness by forc-
ing more maternal resources to be invested in their progeny at the expense of ovules fertilized by other males (Smith & Fretwell, 1974; 
Trivers, 1974). These conflicts are supposed to be greater in outcrossing populations because the probability of multiple siring is high, while 
kin-based cooperation should decrease conflict in inbreeding populations. Therefore, maternal genomes should evolve countermeasures 
against unbalanced resource allocation among offspring in outcrossing populations. In selfing populations, resource allocation conflicts 
should theoretically be weaker, leading to balanced allocation to offspring. Consequently, crosses between plants with different selfing his-
tories (i.e., between a predominantly selfing plant and a predominantly outcrossing one) can lead to unbalanced resource allocation among 
offspring. These expectations have received strong empirical support (see Brandvain & Haig, 2005; Raunsgard et al., 2018 for reviews).

Plant promiscuity

In similar ways that are found in the animal kingdom, several mechanisms can modify the variance of reproduction in plants. Delayed 
stigma receptivity, where outcross pollen arrives before stigmas become receptive and stays there until fertilization occurs, should favour 
outcrossing and increase genetic diversity (Lankinen et al., 2007). Delayed stigma receptivity should also favour pollen competition (Galen 
et al., 1986; Herrero, 2003) as it increases the probability of receiving compatible or superior pollen donors (Willson, 1994). It potentially 
also prevents fertilization by self-pollen of low quality (Armbruster & Gobeille Rogers, 2004). Similarly, it has been found that higher pollen 
density can increase the probability of germination and promote pollen competition, as shown in the tree Betula pubescens (Holm, 1994). 
These temporal dynamics in female receptivity, leading to male (pollen) competition, potentially share similarities to lek competition in (co)
sexual animal populations where multiple males compete among themselves for reproduction (Fiske et al., 1998). It remains to be seen 
if theory from animal ecology regarding the spatial distribution of resources and temporal activity of mates (Emlen & Oring, 1977) can be 
used to understand the evolution of these mechanisms in plant evolution.

On the other hand, other processes could limit the number of offspring. Some species have evolved stigma closure (e.g., when stigma 
lobes close together, either temporarily or permanently; Waser & Fugate, 1986) after mechanical stimulation (Newcombe, 1922). This 
process limits the variance of pollen donors and favour monogamy and/or limit polyandry in plants, which could have positive or negative 
consequences on individuals’ fitness depending on the selfing rate of the species. In predominantly selfing species where outbreeding 
depression is observed even at limited geographical scales among inbred lines (Clo et al., 2021; Le Rouzic et al., 2024; Soto et al., 2023), 
stigma closure after self-pollination may limit outbreeding events and hence negative consequences on reproductive success due to out-
breeding depression caused by genetic incompatibilities. Conversely, in self-incompatible species (e.g., those in the Bignoniaceae family) 
where flowers bloom en mass and hence there is a high potential for geitonogamy, stigma closure can occur after incompatible self-pollen 
disposition from pollinators, impeding compatible pollen deposition from other plants and leading to reduce fitness and fruit set (Milet-
Pinheiro et al., 2009).
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and plants. Our goal was to see whether these research 
strands, that historically have tended to occur in isolation, 
have any commonalities in the concepts they consider and 
where their ideas diverge. We aimed to focus on potential 
similarities, including the advantages of inbreeding via “trans-
mission advantages” and reproductive assurance; costs of 
inbreeding via pollen or sperm discounting and inbreeding 
depression; how inbreeding can be avoided; and how spatial 
structure interacts with the mating system. However, even in 
these areas where it seems that there are similarities, there 
are important differences between the two fields. For exam-
ple, while inbreeding can be advantageous in animals due to 
increasing kin selection, the advantages may not be as great 
due to the timing of mating for each sex, and pre-mating dis-
persal driving individuals away from relatives. The dynamics 
of inbreeding depression also play out differently between 
selfers and biparental species, with the latter more likely to 
exhibit “slow” inbreeding due to the persistence of weakly 
recessive deleterious alleles.

There are key differences between the study of animal and 
plant mating systems that require clarification. From a (self-
ing) plant perspective, the presence of self-fertilization tends 
to be seen as advantageous when present due to, for exam-
ple, its transmission advantage (Fisher, 1941) or reproductive 
assurance (Baker, 1955). However, this is often not the case 
in animal populations, where the assumption is that inbreed-
ing is primarily negative and is hence avoided (Keller, 2002). 
For example, empirical studies have shown that mechanisms 
such as pre-mating dispersal act as a means to avoid kin mat-
ing and reduce the risk of inbreeding (e.g., Dolotovskaya et 
al., 2020; Lebigre et al., 2010; Nelson‐Flower et al., 2012; 
Pusey 1987; Szulkin & Sheldon, 2008). However, there also 
exist theoretical scenarios where inbreeding can be advanta-
geous (Kokko & Ots, 2006; Szulkin et al., 2013; Waser et 
al., 1986), and recent meta-analytic studies find a prevalence 
of inbreeding tolerance in animals (de Boer et al., 2021; Pike 
et al., 2021). Yet even in highly inbred species such as social 
spiders, the observed inbreeding is driven not by an adaptive 
mechanism but indirectly through other means (e.g., selec-
tion against pre-mating dispersal; Bilde et al., 2005; Lubin & 
Bilde, 2007). In general, highly related biparental animal pop-
ulations are exceptional, as opposed to selfing plants where 
high relatedness is the norm. This example demonstrates that 
discussing these separate ideas and looking for potential com-
monalities and differences can help researchers in both fields 
better understand and investigate the evolution of mating sys-
tems more generally. We are also mindful that there are many 
other concepts we could have discussed in this review, and 
some of our comparisons are imperfect. We hence present it 
as an initial aim at bridging these fields, with future research 
and discussions needed to refine the comparisons made here, 
and resolve if there are any other overlapping concepts.

Given the ideas in this review, we present several ideas on 
how we can better compare the existing mating-system con-
cepts, and for future research with regards to either selfing 
plants and hermaphroditic animals, or gonochoric animals 
and dioecious plants.

Explicit theoretical comparison between selfing 
and biparental mating systems
In order to truly consider the commonalities and differences 
between plant and animal mating systems, there needs to be 
more investigations that simultaneously compare the two, 

both theoretically and empirically. A good starting point is 
the development of theoretical work that explicitly compares 
the evolution of self-fertilization and biparental inbreeding to 
predict potential similarities and differences that can be tested 
empirically. Classic examples include early work by Wright 
(1951) and Ghai (1969) that compared inbreeding effects due 
to selfing and biparental inbreeding (see also Box 1). More 
recent theoretical studies are starting to develop a theory of 
evolution of inbreeding preference and avoidance in systems 
with biparental reproduction and self-fertilization, which 
explicitly takes into account evolution of inbreeding depres-
sion (Duthie & Reid, 2016a; Duthie et al., 2016; Porcher & 
Lande, 2016). Another example is the study of Scott et al. 
(2024) that compares the effect of both monandry-polyandry 
and outcrossing-selfing on gametic selection and their differ-
ential effects on deleterious mutations and those subject to 
balancing selection. This study demonstrates the contrasting 
effects of different mating systems on mutation load. The 
degree of monandry-polyandry only affects load if gametic 
selection is present, while selfing can actually increase load 
if gametic selection operates, in contrast to classic theoretical 
expectations. A knock-on effect here is that gametic selection 
can decrease inbreeding depression in outcrossing species, 
making it more permissible for selfing to subsequently evolve.

Developing this theory can be used to address open ques-
tions, including: how does the spread of a modifier for 
increased inbreeding differ between selfing and biparental 
inbreeding, and are the two mechanisms vastly different? 
How does pre-mating dispersal, inbreeding and mating sys-
tems interact in biparental animals, and do equivalent mech-
anisms act in selfers? Are the drivers of inbreeding avoidance 
in biparental species similar to those that cause outcrossing to 
be maintained in hermaphrodite species?

Better experimental quantification of different 
concepts
In addition to the development of new theory, there also 
needs to be better quantification of evolutionary concepts to 
determine if similar processes do act between plants and ani-
mals. First, this means better testing of classic mating system 
ideas that may have been well-developed theoretically but 
seldom tested empirically. Even today, there are few direct 
tests of the transmission advantage in selfers, and those that 
have been undertaken do not necessarily find outcomes that 
match classic assumptions (e.g., Stone et al. (2014) reported 
negative pollen discounting). Second, this also means devel-
oping experiments that directly compare similar concepts 
under selfing and biparental inbreeding. For example, we 
extensively discuss the trade-off between genetic transmission 
and inbreeding depression, but to our knowledge no quanti-
tative comparisons exist comparing this effect under different 
inbreeding levels. One idea would be to use self-compatible 
species that can be selfed or inbred to different degrees as 
experimental systems to test these ideas.

Is selfing tolerated rather than adaptive?
Work on the evolution of self-fertilization has highlighted 
how the field predominantly views selfing as an adaptive trait. 
That is, if self-fertilization is present, then it is due to a trans-
mission advantage that outweighs any inbreeding depression. 
However, this is not the general view with regards to inbred 
animal mating systems, where inbreeding is generally seen as 
a maladaptive outcome due to other factors, such as small 
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population size. This comparison hence raises the question 
as to what extent selfing in natural populations is truly adap-
tive, rather than arising as a by-product of other factors? The 
latter question was posed by Winn et al. (2011) in addressing 
why mixed-mating plants exhibit the same levels of inbreed-
ing depression as outcrossing plants; mixed-mating could 
be stable but could also be short-lived and evolve towards 
outcrossing if selfed offspring have reduced fitness. Similarly, 
many hermaphroditic animal species predominantly outcross 
due to costs of inbreeding depression in selfers (Ramm, 2017).

It is difficult to disentangle inbreeding tolerance from pref-
erence. Inbreeding tolerance should increase in plants and ani-
mals with mate limitation (Kokko & Ots, 2006). Due to the 
sessile nature of plants (and some animals), mate limitation 
is more likely, which should favour inbreeding tolerance. In 
some gonochoric animals, philopatry leads to kin-structured 
neighbourhoods and low levels of inbreeding, which pro-
motes partial purging of inbreeding depression and inbreed-
ing tolerance (Bilde et al., 2005). Inbreeding tolerance can 
be observed in self-incompatible species that are capable of 
delayed selfing following a temporal breakdown in or transient 
self-incompatibility (Goodwillie & Weber, 2018). Whether this 
inbreeding tolerance leads to obligate inbreeding more often in 
plants than animals has yet to be addressed. Three mechanisms 
could nonetheless support a less hindered transition to prefer-
ential inbreeding: more efficient purging under selfing (Glémin, 
2003), a strong automatic advantage, and a history of slow 
inbreeding and purging (Bilde et al., 2005).

One future research direction could be to use theories aris-
ing from animal mating systems as hypotheses to test whether 
selfing is tolerated in natural species and develop both novel 
theory and experiments to determine under what conditions 
such inbreeding could be tolerated rather than selected for or 
against.

How do feedbacks affect mating system evolution 
across spatial scales?
This review has also highlighted the importance of feedbacks 
affecting mating system evolution in both plants and animals, 
especially across spatial scales. In animals, inbreeding avoid-
ance to prevent inbreeding depression has been theoretically 
proposed to drive sex-biased dispersal, although theoretical 
and empirical results paint a much more complex scenario 
(Li & Kokko, 2019). Inbreeding depression can also drive the 
evolution of pre-mating dispersal, with either no sex bias or 
a bistable scenario predicted (only one sex disperses and the 
other is completely philopatric), but cannot alone predict the 
direction of the bias and the main patterns observed in nature. 
For example, the most common association between polyg-
yny and male-biased dispersal does not emerge from models 
only considering inbreeding load (Guillaume & Perrin, 2009), 
but it depends on the interplay between inbreeding avoid-
ance, demographic and environmental stochasticity (Henry et 
al., 2016). Selection against pre-mating dispersal is hypothe-
sized to contribute to transitions to sociality and inbreeding 
in a range of gonochoric animals (Settepani et al., 2017). The 
role of social systems also emerges as an important factor in 
shaping sex-biased dispersal in birds and mammals (Perrin 
& Goudet, 2001), but also sex differences in mate acquisi-
tion and other resources influence asymmetry and direction 
of dispersal among the sexes (Bowler & Benton, 2006). 
Critically, however, the feedback of evolution of sex-biased 
or loss of pre-mating dispersal on evolution of inbreeding 

depression, level of inbreeding and mating system has yet to 
be investigated.

In plants, there has been little modelling on the interplay 
between dispersal and inbreeding strategies. A couple of mod-
els have shown how feedback between dispersal and selfing 
can lead to different dispersal-mating syndromes occurring 
(Cheptou & Massol, 2009; Massol & Cheptou 2011a), 
which go against classic predictions arising from Baker’s Law. 
One recent model further showed that evolution of inbreed-
ing depression during range expansion promotes loss of self-
incompatibility (Encinas-Viso et al., 2020).

Overall, these examples show how, in both fields, explicitly 
considering the role of spatial dynamics and investigating the 
feedbacks between evolution of inbreeding depression and 
mating system, both theoretically and empirically, represent 
rich avenues for future research.
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