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Abstract

Despite the high importance and risk of mountain ecosystems in global biodiversity conservation, the mechanisms giving rise to
and maintaining elevational biodiversity gradients are poorly understood, limiting predictions of future responses. Species richness
peaks at lowlands for many taxa, which might be a consequence of mountain shape, reducing available area in highlands. For other
taxa, diversity can be highest at mid elevations, suggesting the presence of mechanisms that counteract the influence of geometry.
Here, we mechanistically investigate the role of mountain geometry (smaller at the peak) interaction with ecological niche width,
diversification, and altitudinal dispersal to investigate the relative roles of these processes in shaping elevational biodiversity gradi-
ents. We simulated landscapes and lineages until species richness stop increasing and showed that the disproportionately large area
of lowlands provides opportunity for higher species accumulation than any other elevation, even when available niche width and
per-capita diversification rate are uniform across altitudes. Regardless of the underlying Elevational Diversity Gradient, altitudinal
dispersal always plays a stronger role in maintaining highland than lowland diversity, due to unequal areas involved. To empirically
test these predictions resulting from our model, we fit dynamic models of diversification and altitudinal dispersal to three moun-
tainous endemic radiations whose species richness peaks in mid and high-elevation. We find that highland diversity is explained by
increased diversification rates with elevation in Fijian bees, whereas niche availability is more likely to explain high altitude diversity
in frailejon bushes and earless frogs, suggesting these clades are still growing. Our model and findings provide a new framework for
distinguishing drivers of diversity dynamics on mountainsides and allow to detect the presence of clade-specific mechanisms under-
lying the geometry-diversity relationship. Understanding of these ecological and evolutionary forces can allow increased predictabil-
ity of how ongoing land use and climate changes will impact future highland biodiversity.
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Lay Summary

The evolutionary dynamics that occur in mountain regions are thought to influence global patterns of biodiversity. Yet, recent global
temperature rise threatens these fragile and rapidly changing ecosystems, spurring a need to understand the interaction of biotic
and abiotic factors in driving biodiversity dynamics along elevation. In particular, because area availability tends to decrease with
elevation, the accumulation of biodiversity along gradients of elevation may be a consequence of any ecological or evolutionary pro-
cess that is area-dependent. In this paper, by the means of extensive simulations, we generate new theoretical expectations on the
interaction of mountain geometry with rates of altitudinal dispersal, evolutionary diversification, and ecological niche breadth. Along
with this, we fit models to three mountainous endemic radiations to compare with the theoretical predictions of our models. This
work is very timely as it provides a new framework for distinguishing drivers of diversity dynamics on mountainsides and allows us
to detect the presence of clade-specific mechanisms underlying the geometry-diversity relationship.

Introduction ranges (Comte et al., 2024). As temperatures rise, species follow
their temperature niche towards higher elevations until there
is nowhere to go (Vitasse et al., 2021) or are negatively affected
by new competitors migrating from lower elevations (Alexander
et al., 2015). Because available area inherently varies with ele-
vation (e.g., a conic-shaped mountain; Elsen & Tingley, 2015),
any area-dependent ecological or evolutionary process will be
altered. Key processes such as local adaptation, net diversifica-
tion (i.e., speciation minus extinction), and ecological niche width
are all area-dependent and, thus, should be analyzed together

Mountains hold many endemic groups (Jetz et al.,, 2004) and a
large proportion of species richness (Orme et al., 2005; Rahbek
et al.,, 2019), making their study and conservation vital for global
biodiversity. In particular, understanding the ecological and evo-
lutionary dynamics linked to mountain systems is paramount in
the current human-induced climate change. At present, montane
biodiversity face rapidly changing biotic and abiotic conditions,
largely driven by human-induced climate change. For instance,
climate change is characterized by shifts in species elevational
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with mountain geometry to detect and predict global changes in
= ; biodiversity.
£ @ o . . )
o § o 2 The uneven distribution of species across elevational gradients
= £S5 =5 can result from different rates of diversification. Net diversifica-
5 |g< £ ) : ‘ ‘
3 6] 8 tion rates can peak at high elevations (C. E. Hughes & Atchison,
2015; Ebersbach et al., 2017; Esquerré et al., 2019). Landscape
q p
ruggedness (Guegan et al., 1998; Ohlemtiller et al., 2008) and
@ temporal variation in connectivity (Flantua et al., 2019) increase
e} . . . . . .
5 2 chances of species divergence at high altitude, which is reflected
] 3 p & g
o g in, for instance, the large number of montane young endemics
:E % (Fjeldsa, 1994). Likewise, increased topographic complexity in
§ % high-elevation regions may increase the community niche width
g IS via fine scale habitat divergence (Henriques et al., 2022; Malpica
g & q p
& é et al,, 2017). However, from a geographic perspective, high eleva-
'go < E tions may increase extinction rates due to limited habitat area
@ “ . and dispersal limitation (“sky island” effect). Increased area at low
elevation means that species can attain large range sizes which
p g g
. " 5 g increases chances for speciation and simultaneously reduces
}:T’ o & 2 % & &% extinction probability (Gaston, 1998). From an ecological perspec-
© L 8EFE S8aE tive, lowlands can be cradles of species origination via intense
o s §E g p g
8
s ‘§-S E 53 Yoag ecological interactions (Pigot et al., 2016) whereas adaptation to
™~ (=N &) 0 . . . . . .
% % Z ; § o R 8 = cold highlands might constrain further adaptation (Pincheira-
N onoso et al., o changing climatic conditions, increasin
= = D t al., 2013) to changing climat dit g
extinction rates (Sinervo et al., 2010). In contrast, high-elevation
% ) areas tend to exhibit slower velocities of climate change in com-
5 g%j{ ;8:" ° parison to lowlands (Loarie et al., 2009) and often invoke rain
=] =) (] . . . .
s 8 2% 8 S shadow effects that shield species from periods of desertifica-
) . . . . .
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described (Lancaster, 2016; Polato et al., 2018). In summary, EDG
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Figure 1. Schematic diagram of processes taking place in our model across ecological and evolutionary dimensions (A). We set different scenarios
where per-capita rates of diversification as well as niche width could independently increase, decrease or be uniform with elevation (B).

is thought to be driven by geographic variation in species-level
processes of speciation, migration, and extinction, coupled with
ecological factors such as habitat area, niche width, and produc-
tivity (Cai et al., 2018; Gaston, 2000).

Despite the wealth of research on EDG (Table 1), a compre-
hensive theory is needed to disentangle: (a) geometry (smaller
areas of habitat available towards mountain peaks), (b) diversi-
fication asymmetries (faster in highlands or lowlands), (c) niche
width (greater in highlands or lowlands) and (d) altitudinal dis-
persal limitation caused by local adaptation. Here we simulate
the evolution of clades on a mountain-like landscape where niche
width and diversification rates are uniform or vary with eleva-
tion (increasing or decreasing). In our model, limitations to range
expansion due to geography, niche width, and local adaptation
cause variation, across elevational bands in the rate of species
accumulation and altitudinal dispersal. With our simulation
approach, we measure variation in strength and forms of EDG
under different evolutionary scenarios, describe the expected
dynamics of effective immigration across elevations, and report
resulting differences in range size between highland and lowland
lineages. This work generates new theoretical expectations, filling
a gap in our understanding of drivers of EDGs, and expands our
ability to diagnose process from patterns in empirical distribu-
tions that might be related to large-scale environmental changes.
Finally, we fit dynamic likelihood models to three mountainous
endemic radiations to test the theoretical predictions of our mod-
els and to empirically disentangle the contribution of diversifica-
tion and dispersal to the creation of EDGs in reality.

Methods

Population-based model

We simulated the radiation of a clade across an elevational gradi-
ent using a population-based model. In our model, species’ range
expansion is influenced by the interaction of mountain geom-
etry with elevational niche availability, and local adaptation.

Furthermore, mountain geometry interacts with differential rates
of diversification. All these processes in turn change the rates of
diversity accumulation and altitudinal dispersal along the gradi-
ent (Figure 1A). Below, we describe the abiotic and evolutionary
components of the model.

Processes and dynamics during simulation

The populations in our model undergo four basic processes:
geographic range expansion, local adaptation, geographic con-
traction, and diversification (Herrera-Alsina et al., 2018, 2021)
taking place in a gridded domain that lies over a coned-shaped
landscape (see below). A species will expand its geographic range
by dispersing to new cells (at rate y). The cells available for col-
onization are those that are adjacent to the species range and
whose niche width is not saturated. A cell’s saturation is defined
as the maximum number of different species that a cell can hold:
species-level carrying capacity K. Species contract their range by
going locally extinct (extirpation) from a cell at rate . When the
last population of a species undergoes extirpation, the species is
extinct. Diversification in our model is simplified and represents
the net increase in species in the system. We modeled diversifi-
cation as the creation of new species by taking one population
from the parental species to then become a new species, so that
all species start with range size of one cell. This process can be
seen as mutation resulting in a speciation event. The rate of
diversification A and ecological niche width K are determined by
the environment (a property of the elevation at which the popu-
lation is located). Each population, moreover has a temperature
preference, which is inherited during diversification but evolves
with each colonization event. The colonizing population will have
a temperature preference slightly different from its parental
population: adding or subtracting a random value taken from a
normal distribution of mean 0 and standard deviation of 1. We
implemented local adaptation as the dependence of y on the dif-
ference between the temperature preference of a population (T,
and the temperature at a given cell (T; Bocedi et al., 2013).
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o (7

where V represents the strength of stabilizing selection and
local adaptation, and it determines population’s fitness and
therefore how steeply population survival declines as it moves
away from its best-adapted condition. Selection is strong when
V =5, while it weakens when V is large (> 1,000), effectively corre-
sponding to absence of local adaptation. Notice that because the
rates of the four basic processes are defined at population level,
two species will differ in total rates (per-lineage rates) if they dif-
fer in the number of populations. As for A and K, T, is programmed
to vary with elevation (see below).

Landscape

The landscape is a gridded domain in cone shape (similar to many
mountains (Elsen & Tingley, 2015); Supplementary Figure S1)
with four concentric elevational bands. In nature, the decrease
in area with elevation can vary widely, from exponential to linear
relationships (Elsen & Tingley, 2015). Here, we represented this
decrease through a reduction in the number of cells towards the
mountaintop, where highlands represent 5.8% of the total area
and lowlands 58%. The intermediate bands represent 24% and
13%. Because temperature decreases with elevation, cells have
a temperature value, ranging from 20° in lowlands and decreas-
ing 5° at each elevational band. Notice that changes in how steep
the temperature gradient is, would increases/decreases the sim-
ulated time needed for species to show signal of local adaptation
(see below). The landscape also featured gradients in per-lineage
rates of diversification by varying diversification (\) according to
elevation: We modeled different scenarios where K and A increase,
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decrease or are uniform with elevation (Figure 1B). The difference
in A between the most speciose and least speciose elevational
band was nine-fold and for K, the elevational band with the wid-
est niche could hold four times more species locally than the
band with the narrowest niche. To further disentangle the effects
of dissimilar area across elevation (i.e., cone shape) from the
influence of highlands being surrounded by lowlands, we run the
simulations on a landscape where the mountaintop is flat and
extensive (i.e., plateau where highlands represent 40% of the total
area, intermediate bands represent 16%-19% whereas lowlands
represent 20%; Supplementary Figure S1). This additional sce-
nario provides insights on diversity patterns in plateau-shaped
mountains (Elsen & Tingley, 2015).

Simulation initialization, equilibrium and variables being
tracked

Simulations started with a single population randomly placed
in either lowlands or highlands; the temperature preference of
the population matches the temperature of that cell. Simulations
run in continuous time, and the waiting times between events are
randomly taken from an exponential distribution whose parame-
ter is the total number of populations times the rates of coloniza-
tion, extirpation and diversification (Gillespie algorithm, Gillespie,
1977). At the beginning of the simulation, when the landscape is
empty, populations can easily disperse so that local saturation
does not limit species’ range expansion. In this stage, range expan-
sion is only constrained by local adaptation (see below) and both
local and regional richness increase over time until most of cells
are at K (Herrera-Alsina et al., 2018). At this point, local richness
cannot increase, but species keep accumulating at regional scale
because of turnover (non-equilibrium). We let the simulation run

Richestelevation

Highlands
Lowlands

100100
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A uniform Adecreases Aincreases
K uniform K'incr Kincr Kincr
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% 100
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Figure 2. EDG changes in strength and directionality across different simulated conditions. We simulated nine scenarios (50 replicates each)

where per-capita diversification rate (\) and niche width (K) decreased, increased, or were kept uniform with elevation. In eight scenarios, 100% of
the replicates (in white font) showed that richness peaks either at lowlands (brown bar) or highlands (blue bar). However, when A increases and K
decreases (third scenario from the left) 54% of simulations peaked in highlands and the rest in lowlands. Y-axis shows the average gradient strength
(the relative difference in species richness from the richest band to the next) across replicates along with error bars (whiskers).
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until we ensure that regional richness stops increasing (by visu-
alizing the species accumulation curve over time; Supplementary
Figure S4), which indicates a dynamic equilibrium. For those sim-
ulations where local adaptation is turned on, the system could
also be at (non-) equilibrium in local adaptation to temperature;
thus, we kept track of the mismatch between T, and T, over time.
We found that an equilibrium in local adaptation (i.e.,, no further
change in average T, - T)) is attained earlier than equilibrium
in regional richness, and we used the latter to define stages of
equilibrium and non-equilibrium. When simulations ended, we
retrieved patterns of biodiversity distribution, altitudinal disper-
sal across four elevational bands, and intra-elevational band var-
iation in temperature preference recorded for the entire duration
of the simulation.

Evolutionary scenarios

We defined three scenarios of association between K and ele-
vation: niche width decreases with altitude (lowlands can pack
more species at each cell than highlands), niche width increases
with altitude (lowlands can pack less species at each cell than
highlands), and uniform niche width in altitude. Similarly, we set
three scenarios where per-lineage diversification rate varied with
elevation: A is higher in lowlands than highlands, A is lower in
lowlands than highlands, and A uniform across elevational bands.
With the nine combinations of K and A\ we ran sets of simulations
where local adaptation was turned on and where it was turned
off. Simulations were run with highland or lowland origin (i.e.,
the location of the first population), yielding to a total of 36 dif-
ferent scenarios; we ran 50 replicates for each. Finally, we carried
out the simulations in both landscapes (cone- and plateau-
shaped). To explore whether our results remain true with a dif-
ferent choice of parameters, we also ran simulations where the
variation in diversification rates along elevation was small (i.e,,
high rate was twice as high as the low rate, in contrast with our
main simulation where high rate was nine times higher than the
low rate). We did not explore how rates of colonization and local
extinction (gamma and mu, respectively) affect the outcome of
the simulations because a sister model to ours has shown that (a)
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variation in colonization rate does not influence regional species
richness, and (b) variation in local extinction rate has no effect on
how richness relates to available area (Herrera-Alsina et al, 2018,
Evolution Figure 6). Simulations are coded in R and c++ (c++ is
integrated into R using rcpp package) and are available at https://
doi.org/10.6084/m9.figshare.24,534,760.v1.

Empirical datasets

Diversification and dispersal events across elevation leave a signa-
ture on phylogenetic reconstructions that can be retrieved when
using adequate models (van Els et al., 2021). When elevational
bands are associated with differential diversification rates, the
branch lengths of a phylogenetic tree will show systematic varia-
tion in diversification rates (i.e., the branching pattern) as lineages
switch from one elevation to another. Importantly, the change in
elevation undertaken by species also modifies the richness along
the elevational gradient. We fit likelihood models to real-world
radiations (see below) where diversification rates across eleva-
tions are simultaneously modeled with changes in elevation. In
these models, termed state-dependent diversification models
(Maddison et al., 2007), the probability of a species being present
at a given elevation depends on (a) the diversification rate for that
elevation, and (b) the rate of switching to and out this elevational
band. We looked into the evolution of frailejon bushes (Pouchon
et al., 2021), Fijian bees (Dorey et al., 2020) and earless frogs (Von
May et al., 2018), which are endemic mountainous monophyletic
clades (similar to our simulated ones), and whose diversity peaks
in intermediate or high-elevation. We used phylogenetic trees and
elevation data provided at the original publications. We classified
species’ elevation into lowland, midland and highland species by
defining three elevational bands of equal width bounded by the
lowest and highest elevations recorded for species. This catego-
rization is necessary because statistical-robust likelihood meth-
ods cannot handle continuous variables (Beaulieu & O'Meara,
2016; Herrera-Alsina et al., 2019; Rabosky & Goldberg, 2015). We
fitted likelihood-based diversification models that differ in their
assumptions, compared their likelihoods using AIC weights, and
recovered the parameter estimates (diversification and transition

Highland species of
lowland origin

Lowland species of
highland origin

A increases
K increases

Relationship with elevation

Figure 3. The proportion of species at a given elevation that originated at a different elevational band. Bar height shows the average proportion across
replicates along with error bars (whiskers). We show three scenarios (with 50 replicates each) which differed in where per-capita diversification rate (\)
and niche width (K) are the highest: lowlands (left panel), highlands (right panel) or uniform (middle panel). A similar plot to this but featuring local

adaptation is available in Supplementary Material.
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rates, see below) of the best performing model. The transition of
a lineage from one elevational band to another was modeled in
five ways: (a) shifting to an adjacent elevational band, uphill and
downhill movements happening at the same rate, (b) shifting to
an adjacent elevational band, uphill and downhill movements
happening at different rates, (c) shifting to any elevational band,
uphill and downhill movements happening at the same rate,
(d) shifting to any elevational band, uphill and downhill move-
ments happening at different rates, and (e) each movement into
and out of any elevation has its own rate. We modeled changes
in diversification rates that are either dependent or independent
of elevational shifts. In elevational-dependent models, we did
not assume any elevational band to have increased diversifica-
tion rate, instead, we allowed the model to estimate which band
has the highest rate. We started the likelihood maximization of
the 15 models in three different points of the parameter space to
avoid finding only local optima. We used the R package SecSSE
(Herrera-Alsina et al., 2019) for this analysis.

Results
Simulation models

In the absence of differences in niche width (K) and diversification
rates across elevation (i.e., geometry is the sole factor), we found
that species richness decreases with altitude, with lowlands being
the most species-rich (Figure 2). This gradient in species richness
isincreased when niche width is no longer uniform (geometry + K)
but higher in lowlands than highlands and decreased when niche
width varies in the opposite direction (Figure 2). However, the
influence of K is never strong enough to entirely counteract the
impact of geometry on species richness. Local adaptation yielded,
in general, to similar diversity patterns as models with no local
adaptation (see section below). Interestingly, when simultane-
ously considering geometry and variation in diversification rates
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(i.e., under uniform K), the elevational band with the highest
diversification rates is the one showing the highest species rich-
ness is. Species richness peaks at mid- or high elevations when
highlands boast high diversification rates compared to lowlands.
This suggests that a positive relationship between diversification
rate and altitude effectively counteracts the effects of geometry
in species accumulation (Figure 2). However, this does not hold
in simulations where the difference between the lowest and the
highest diversification rates is small (Supplementary Figure S2).
To investigate the interaction between geometry, K and diversi-
fication rates we had two scenarios: lowlands-have-it-all where
both diversification rate and niche width are higher in lowlands
than highlands and highlands-have-it-all with the opposite con-
figuration. Our simulations show that in lowlands-have-it-all,
lowlands are the richest with the steepest decrease in diversity
with altitude. In highlands-have-it-all, the midlands are the rich-
est elevation, and the EDG is of moderate intensity. Interestingly,
the steepness of the gradient resulting in the highlands-have-
it-all scenario is no different from the gradient resulting when
highlands have high diversification rates, but K is uniform. The
insights of these results are threefold: (a) diversification rate var-
iation across altitude exerts higher influence on elevational pat-
terns of diversity than niche width variation does, (b) richness can
increase with elevation, but the EDG will never be steep, and (c)
lowland diversity is impacted by the interaction between K and
diversification rate whereas highland diversity is not.

When looking at the net dispersal across elevational bands, our
results show that when geometry is the sole factor affecting the
EDG (i.e., uniform niche width and diversification rates along ele-
vation), the contribution of lowlands to highland diversity is high:
a large proportion of lineages found in highlands are in fact, of
lower elevational origin (Figure 3). Lowland diversity, on the other
hand, is mostly formed by lineages that originated at this eleva-
tion with a small contribution from lineages originated at higher
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Figure 4. Three mountain endemic radiations where species richness peaks at mid-to high elevations. We fit maximum likelihood models that differ
in the how diversification and dispersal vary across three elevational bands. This figure summarizes the results from the best supported model for

each clade (see Supplementary Table S1).
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elevation. Lineages tend to move across elevations more often
before the system equilibrates: lowlands and highlands receive
more dispersers when the clade is young (Supplementary Figure
S3). The only scenario where the number of downhill dispersers
is similar to the number of species moving to higher elevation
is when both rate of diversification and niche width are higher
in highlands than lowlands (i.e., highlands-have-it-all) (Figure 3).

In our plateau-shaped landscape (where the large-area
highlands are surrounded by narrow bands of lower elevation;
Supplementary Figure S1), the highest elevation is double in sur-
face than lowlands and yet, our model predicts that diversity
will peak in lowlands when K and diversification rates are uni-
form. This is because the movement of species across different
locations within an elevation band is slower in lowlands than
in a plateau, as while lowlands are structured in a “ring,” cells in
a plateau are better connected to each other. This difference in
intra-elevation dispersal in turn causes species turnover and
richness to be higher in lowlands. Therefore, our results suggest
that while available area is a key factor driving the dynamics of
species accumulation over time, the space configuration is also
important.

We calculated the proportional occupied area for every spe-
cies at each elevational band by measuring the species’ range
size and dividing it by the total area available at a given band.
High-elevation species tend to occupy a large proportion of the
available area (40% in average) in comparison to lowland spe-
cies (8% in average), and this pattern is more pronounced when
highlands have low rates of diversification. However, when niche
width at highest elevation is low, range sizes will be small due to
limited opportunities for range expansion (i.e., local saturation
is reached early). Unlike highlands, species inhabiting lowlands
have range sizes that are proportionally small (when compared
with the large area available at this elevation), especially when
rates of diversification are high.

Influence of local adaptation

Simulations that featured local adaptation show that this process
does not influence the strength of EDG nor its directionality, but it
does impact different aspects of biodiversity. For instance, when
considering the mountain system as a whole (i.e., all elevational
bands), simulations with local adaptation resulted in higher
regional species richness than simulations with no local adap-
tation (Supplementary Figure S4). Furthermore, local adaptation
reduces the net flow of species across elevation, and we found
the interesting emergent tendency that dispersal of highland lin-
eages is more limited by local adaptation than lowland lineages
(Supplementary Figure S5). In models with local adaptation, we
found that in all scenarios, populations at a given elevation have
small variation in temperature preference and this patternis con-
sistent at any elevation (Supplementary Figure S6). However, the
only exception is when niche width increases with altitude (irre-
spective of how diversification rates are associated with altitude),
temperature-adapted lowland populations will be more variable
in temperature preference than their highland counterpart.

Empirical endemic radiations

In earless frogs, frailejon bushes and Fijian bees, we found high
statistical support for models where downhill and uphill move-
ment take place at the same rate (pooled AIC weights = 66%, 49%
and 73% respectively; Figure 4). Moreover, models assuming that
lineages only disperse to adjacent bands were better supported
than models without this assumption in earless frogs and Fijian
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bees (Supplementary Table S1). In contrast, we found that fraile-
jon bushes tend to move across elevations in a less restricted
manner; for instance, a lowland species can shift to highlands
without passing to middle elevation first. Interestingly, Fijian
bees show strong support for elevation-dependent diversification
(pooled AIC weights = 47%); in other words, species systematically
increase their diversification rates while inhabiting the highlands
and decrease their rates when moving to lower elevation (Figure
4). In contrast, models with elevation-independent diversification
in earless frogs and frailejon bushes performed best: lineages
diversify at the same rate at any elevational band (pooled AIC
weights = 84% and 89% respectively; Supplementary Table S1). In
particular, models with homogeneous diversification rates across
lineages were highly supported for these two clades.

Discussion

Our simulation predicts, just as empirical data suggests, that
there is a wide range of possible outcomes for diversity patterns,
which ultimately depend on mountain geometry, evolutionary
(altitudinal variation in diversification rates) and ecological (alti-
tudinal variation in niche width) factors, and clade age. Patterns
in nature are complex and to disentangle the underlying mecha-
nisms, one should contrast them with simpler, adequate theoret-
ical expectations such as the ones we have provided.

The arrival of species into the system (we simulate an endemic
clade in a mountain system where no immigration from else-
where takes place) is not included in the model, but our frame-
work allows us to describe how it might influence the distribution
of species. Whether the elevational gradient changes or not in
presence of dispersers from outside will depend on what stage of
the clade’s evolution immigration takes place. The arrival of out-
side dispersers occurs early in the clade’s history when local sat-
uration is not reached, this guarantees successful colonization at
wherever elevation niche width is least occupied. If niche width
is uniform, lowlands could have an increased chance of receiving
migrants due to their large available area. This means that the
connectivity of a mountain to an adjacent source of species can
change the distribution of richness across elevation. For instance,
rodent diversity in Mt. Taibai distributes in a hump-shaped fash-
ion in the northemn slope of the mountain, which is isolated by
physical barriers and potentially receives few immigrants (Shuai
et al., 2017). In contrast, the southern slope of the mountain is
better connected to the rest of the region and shows monotonic
decrease of diversity with elevation. According to our results, this
distribution of species in the northern slope is consistent with
scenarios where diversification rates are high at highlands. This
suggests (a) the erosion of the natural hump-shaped distribution
of rodents in the southern slope via the addition of outside dis-
persers into the lowlands (Fu et al., 2006), and (b) evolutionary
dynamics of Mt. Taibai were not in equilibrium by the time spe-
cles immigration took place.

For the three empirical endemic radiations where we fit
likelihood models, we found that the underlying mechanisms
behind diversity peaking at intermediate or high-elevation can
be different. In the case of Fijian bees, high rates of diversifica-
tion at the top of the mountains guarantee that diversity does not
mainly accumulate at low elevation, even if altitudinal disper-
sal is symmetric. The contribution of diversification counteracts
mountain geometry to impact the distribution of Fijian bees, as
diversification by our simulation model where we found that low-
lands would be the richest unless highlands have high rates of
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diversification. For frailejon bushes and earless frogs, with species
richness not being the highest in lowlands, we find no evidence
that lowlands have low rates of diversification or that uphill
dispersal events outnumber the opposite movement. This is an
expected outcome from our simulation when the system has not
reached a dynamic equilibrium, which is likely to be the case in
these young clades. This idea is further supported by our finding
that inter-lineage variation in diversification rates for both clades
is rather negligible, meaning that lineages have similar rates of
diversification, which matches the early stages of our simulation
approach, as local saturation has not been reached in a young
clade, species have similar range siz,es and diversification rates.
Areas of recent mountain uplift that have driven recent radia-
tions of clades resulting in diversity peaks above the lowlands
likely experience such processes (C. Hughes & Eastwood, 2006;
Pérez-Escobar et al., 2017).

In our model, reproductive isolation is not considered, but our
simulations show two patterns, which are in line with previous
studies where narrower thermal tolerances in the tropics than in
temperate areas decrease geneflow, which promotes reproductive
isolation and ultimately species divergence (Gill et al., 2016; Polato
et al., 2018; Sheldon et al., 2018). In our model (a) total mountain
richness in simulations featuring local adaptation was higher
than simulations without this process, and (b) that highlands
and lowlands are less likely to exchange lineages in presence
of local adaptation. With local adaptation, species in our model
take longer to be able to colonize adjacent elevational bands, so
that lowland species tend to stay longer in lowlands where they
can attain larger range sizes and increase their total probabilities
for diversification. Thus, we found a similar macroevolutionary
trend but with a different mechanistic cause (Ghalambor, 2006).
Furthermore, this may be akin to patterns identified in the low-
land neotropics where species with large range sizes can show
considerable genetic divergence and wide-ranging speciose
clades have diversified rapidly and recently (Melo et al., 2018;
Richardson et al., 2001).

Our simulations show that local adaptation keeps species
restricted to a given temperature resulting in large range sizes
at given elevation with a subsequent increase in opportunities
for diversification. The limited intra-annual variation in temper-
ature (i.e., low seasonality) in tropical mountain systems causes
that summer temperatures in highlands never occur in winter-
time in the lowlands. This mechanism strengthens the effects of
local adaptation by limiting inter-elevation dispersal. However,
the increase in seasonality in the tropics is one of the effects
of climate (Feng et al., 2013). This means that species that han-
dle strong temperature fluctuations within a year are no longer
restricted to only one elevational band. Consequently, species in
the tropics are less likely to experience the range-limiting effects
of local adaptation, resulting in a low accumulation of diversity.

With the ongoing climate change crisis, one of the main con-
cerns is species’ response to it. Recent, global temperature rise
has pushed species towards higher elevations to track their tem-
perature requirements (Moritz et al., 2008; Wilson et al., 2005),
with many plant and animal species altering their elevational
distribution (Chen et al., 2011; Lenoir et al., 2020; Parmesan et al.,
2003). While most of them have moved to higher elevations, an
important percentage has moved in the opposite direction, lower-
ing their altitudinal range (Lenoir et al., 2020). Our model shows
that upslope migration should exceed downslope movements
even in the absence of environmental gradients or change. This
suggests that analyses of contemporary range shifts, which show
predominant upslope movement of species under climate change

(Lenoir et al., 2020), should consider applying more sophisticated
null models that account for these expected equilibrium disper-
sal asymmetries across elevations (Jezkova & Wiens, 2016).

A concerning interpretation of our finding that lineages natu-
rally tend to disperse to higher elevation, is that healthy highland
biodiversity depends on lowland conservation. Lowlands and
mountain foothills are especially targeted by human activities,
which threatens evolutionary processes across the entire eleva-
tion gradient in mountains. Our results reinforce the paramount
role of ecotones and transitional vegetation across elevational
bands to facilitate the movement of lineages (Erdés et al., 2018;
Wehling & Diekmann, 2009). Conservation efforts should maxi-
mize the well-being of those transitional ecosystems, particularly
in young radiations, when according to our results, dispersal is at
its highest rate.
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